4 research outputs found

    3D Convolutional Neural Networks for Solving Complex Digital Agriculture and Medical Imaging Problems

    Get PDF
    3D signals have become widely popular in view of the advantage they provide via 3D representations of data by employing a third spatial or temporal dimension to extend 2D signals. Predominantly, 3D signals contain details inexistent in their 2D counterparts such as the depth of an image, which is inherent to point clouds (PC), or the temporal evolution of an image, which is inherent to time series data such as videos. Despite this advantage, 3D models are still underexploited in machine learning (ML) compared to 2D signals, mainly due to data scarcity. In this thesis, we exploit and determine the efficiency and influence of using both multispectral PCs and time-series data with 3D convolutional neural networks (CNNs). We evaluate the performance and utility of these networks and data in the context of two applications from the areas of digital agriculture and medical imaging. In particular, multispectral PCs are investigated for the problem of fusarium-head-blight (FHB) detection and total number of spikelets estimation, while time-series echocardiography are investigated for the problem of myocardial infarction (MI) detection. In the context of the digital agriculture application, two state-of-the-art datasets were created, namely the UW-MRDC WHEAT-PLANT PC dataset, consisting of 216 multispectral PC of wheat plants, and the UW-MRDC WHEAT-HEAD PC dataset, consisting of 80 multispectral PC of wheat heads. Both dataset samples were acquired using a multispectral 3D scanner. Moreover, a real-time parallel GPU-enabled preprocessing method, that runs 1065 times faster than its CPU counterpart, was proposed to convert multispectral PCs into multispectral 3D images compatible with CNNs. Also, the UW-MRDC WHEAT-PLANT PC dataset was used to develop novel and efficient 3D CNNs for disease detection to automatically identify wheat infected with FHB from multispectral 3D images of wheat plants. In addition, the influence of the multispectral information on the detection performance was evaluated, and our results showed the dominance of the red, green, and blue (RGB) colour channels over both the near-infra-red (NIR) channel and RGB and NIR channels combined. Our best model for FHB detection in wheat plants achieved 100% accuracy. Furthermore, the UW-MRDC WHEAT-HEAD PC dataset was used to develop unique and efficient 3D CNNs for total number of spikelets estimation in multispectral 3D images of wheat heads, in addition to adapting three benchmark 2D CNN architectures to 3D images to achieve the same purpose. Our best model for total number of spikelets estimation in wheat head achieved 1.13 mean absolute error, meaning that, on average, the difference between the estimated number of spikelets and the actual value is equal to 1.13. Our 3D CNN for FHB detection in wheat achieved the highest accuracy amongst existing FHB detection models, and our 3D CNN for total number of spikelets estimation in wheat is a unique and pioneer application. These results suggest that replacing arduous tasks that require the input of field experts and significant temporal resources with automated ML models in the context of digital agriculture is feasible and promising. In the context of the medical imaging application, an innovative, real-time, and fully automated pipeline based on 2D and 3D CNNs was proposed for early detection of MI, which is a deadly cardiac disorder, from a patient’s echocardiography. The developed pipeline consists of a 2D CNN that performs data preprocessing by segmenting the left ventricle (LV) chamber from the apical 4-chamber (A4C) view from an echocardiography, followed by a 3D CNN that performs MI detection in real-time. The pipeline was trained and tested on the HMC-QU dataset consisting of 162 echocardiography. The 2D CNN achieved 97.18% accuracy on data segmentation, and the 3D CNN achieved 90.9% accuracy, 100% precision, 95% recall, and 97.2% F1 score. Our detection results outperformed existing state-of-the-art models that were tested on the HMC-QU dataset for MI detection. Moreover, our results demonstrate that developing a fully automated system for LV segmentation and MI detection is efficient and propitious and could enable the creation of a tool that reliably suggests the presence of MI in a given echocardiography on the fly. All the empirical results achieved in our thesis indicate the efficiency and reliability of 3D signals, that are multispectral PCs and videos, in developing detection and regression 3D CNN models that can achieve accurate and reliable results.Mitacs, EMILI, NSERC, Western Diversification Canada, The Faculty of Graduate Studies.Master of Science in Applied Computer Scienc

    Fusarium head blight detection, spikelet estimation, and severity assessment in wheat using 3D convolutional neural networks

    Get PDF
    Fusarium head blight (FHB) is one of the most significant diseases affecting wheat and other small grain cereals worldwide. The development of resistant varieties requires the laborious task of field and greenhouse phenotyping. The applications considered in this work are the automated detection of FHB disease symptoms expressed on a wheat plant, the automated estimation of the total number of spikelets and the total number of infected spikelets on a wheat head, and the automated assessment of the FHB severity in infected wheat. The data used to generate the results are 3-dimensional (3D) multispectral point clouds (PC), which are 3D collections of points - each associated with a red, green, blue (RGB), and near-infrared (NIR) measurement. Over 300 wheat plant images were collected using a multispectral 3D scanner, and the labelled UW-MRDC 3D wheat dataset was created. The data was used to develop novel and efficient 3D convolutional neural network (CNN) models for FHB detection, which achieved 100% accuracy. The influence of the multispectral information on performance was evaluated, and our results showed the dominance of the RGB channels over both the NIR and the NIR plus RGB channels combined. Furthermore, novel and efficient 3D CNNs were created to estimate the total number of spikelets and the total number of infected spikelets on a wheat head, and our best models achieved mean absolute errors (MAE) of 1.13 and 1.56, respectively. Moreover, 3D CNN models for FHB severity estimation were created, and our best model achieved 8.6 MAE. A linear regression analysis between the visual FHB severity assessment and the FHB severity predicted by our 3D CNN was performed, and the results showed a significant correlation between the two variables with a 0.0001 P-value and 0.94 R-squared

    Fully Automated 2D and 3D Convolutional Neural Networks Pipeline for Video Segmentation and Myocardial Infarction Detection in Echocardiography

    Full text link
    Cardiac imaging known as echocardiography is a non-invasive tool utilized to produce data including images and videos, which cardiologists use to diagnose cardiac abnormalities in general and myocardial infarction (MI) in particular. Echocardiography machines can deliver abundant amounts of data that need to be quickly analyzed by cardiologists to help them make a diagnosis and treat cardiac conditions. However, the acquired data quality varies depending on the acquisition conditions and the patient's responsiveness to the setup instructions. These constraints are challenging to doctors especially when patients are facing MI and their lives are at stake. In this paper, we propose an innovative real-time end-to-end fully automated model based on convolutional neural networks (CNN) to detect MI depending on regional wall motion abnormalities (RWMA) of the left ventricle (LV) from videos produced by echocardiography. Our model is implemented as a pipeline consisting of a 2D CNN that performs data preprocessing by segmenting the LV chamber from the apical four-chamber (A4C) view, followed by a 3D CNN that performs a binary classification to detect if the segmented echocardiography shows signs of MI. We trained both CNNs on a dataset composed of 165 echocardiography videos each acquired from a distinct patient. The 2D CNN achieved an accuracy of 97.18% on data segmentation while the 3D CNN achieved 90.9% of accuracy, 100% of precision and 95% of recall on MI detection. Our results demonstrate that creating a fully automated system for MI detection is feasible and propitious.Comment: Multimed Tools Appl (2022

    Developing Organic Fertilizer Through Co-Composting Olive Mill Wastewater

    No full text
    The main objective of this study is to evaluate the potential of olive mill wastewater (OMW) as an organic fertilizer through co-composting with various agricultural by-products. OMW was mixed with agricultural by-products, including maize silage, sugar beet pulp, and sugarcane bagasse, in controlled proportions and conditions. The study was conducted at the National Institute of Agricultural Research in Rabat, Morocco. The composting process was monitored over time, focusing on the evolution of key physicochemical parameters and phenol content of each mixture. The results showed that the performance of the composts varied, with the mixture containing sugar beet pulp (SBPO) exhibiting the most promising results, followed by maize silage (MSO) and sugarcane bagasse (SBO). These results suggest that co-composting OMW with agricultural by-products can produce high-quality organic fertilizers, thus reducing the need for inorganic alternatives and providing a sustainable waste management solution in the olive oil industry. It highlights the potential for reducing phenols characteristic of OMW and promoting sustainable agricultural practices. The application of the composts to crops was not tested, highlighting the need for further research in this regard. Future investigations should focus on evaluating the long-term effects of OMW-derived composts on soil health and crop productivity. This study explores a combination of materials that, to our knowledge, has not been previously documented in scientific literature. The results underscore the importance of sustainable waste management practices and their potential role in improving soil fertility and reducing the environmental impact associated with olive oil production
    corecore