13 research outputs found

    Dendrimers made of porphyrin cores and carbazole chromophores as peripheral units. Absorption spectra, luminescence properties, and oxidation behavior

    No full text
    Luminescent and redox-active porphyrin-based dendrimers of first and second generation have been synthesized, and their absorption spectra, photophysical properties, and oxidation behavior have been investigated, together with those of the corresponding aldehyde carbazole precursors. All the dendrimers contain a porphyrin core and carbazole-based chromophores as branches. The structural formulas of the new species are represented in Figures 1 and 2, with the corresponding schematizations. The absorption spectra of the aldehyde carbazole precursors A1-A6 in dichloromethane exhibit intense transitions in the UV region, centered on the carbazole and benzaldehyde subunits. The lowest-energy absorption bands receive contribution from charge-transfer transitions. Compounds A1-A6 are luminescent at room temperature in fluid solution; such a luminescence is attributed to twisted intramolecular charge-transfer excited states. The luminescence at 77 K in a rigid matrix is blue-shifted with respect to room-temperature emission and is assigned to locally excited states. Absorption spectra of the porphyrin-cored dendrimers P1-P6 appear additive as they are constituted by visibile bands due to porphyrin absorption and bands in the UV region due to transitions centered on the carbazole-based branches. Emission spectra of P1-P6 both at 77 K and at room temperature are typical of porphyrin species and independent of excitation wavelength, indicating that the light collected by the peripheral chromophores is quantitatively transferred to the core. All the compounds exhibit a rich oxidation behavior in 1,2-dichloroethane solution, with reversible processes centered on the different carbazole subunits. Interaction between the different carbazole centers depends on the size of the spacer interposed.status: publishe

    Synthesis and light-emitting properties of a new conjugated polymer containing carbazole and quinoxaline moieties

    No full text
    A conjugated polymer consisting of carbazole and quinoxaline units (5) is synthesized in a high isolation yield (95\%). The polymer possesses a high molecular weight (similar to22kDa) and is completely soluble in common solvents. When 5 is used as an emitting layer in a multilayer electroluminescence (EL) device, it emits a blue light of 484 nm and exhibits a current efficiency of similar to0.7 cd/A

    Electrochemical Performance of Anthocleista djalonensis on Steel-Reinforcement Corrosion in Concrete Immersed in Saline/Marine Simulating-Environment

    No full text
    In this paper, electrochemical techniques were employed to study performance of different concentrations of Anthocleista djalonensis leaf-extract admixtures on the corrosion of steel-reinforcement in concrete immersed in 3.5 % NaCl, for simulating saline/marine environment. Analysed test-results showed that the corrosion rate correlated directly with admixture concentration and inversely with cube of the ratio of standard deviations of corrosion potential and corrosion current. The 0.4167 % A. djalonensis (per weight of cement) exhibited optimal inhibition efficiency, g = 97.43 ± 1.20 %, from analysed experimental data, or 94.80 ± 3.39 %, from predicted correlation model, on steel-reinforcement corrosion in the medium. The other admixture concentrations also exhibited high efficiencies at inhibiting steel-reinforcement corrosion in the chloride contaminated environment. Isotherm fittings of he experimental and predicted performance suggest that they both obeyed the Langmuir adsorption model. Evaluated parameters from the isotherm model indicated favourable adsorption and predominant chemisorption mechanism by this environmentally-friendly inhibitor of steel-reinforcement corrosion in the saline/marine simulating- environment. © 2014, The Indian Institute of Metals - IIM
    corecore