9 research outputs found

    Vocal markers from sustained phonation in Huntington's Disease

    Get PDF
    Disease-modifying treatments are currently assessed in neurodegenerative diseases. Huntington's Disease represents a unique opportunity to design automatic sub-clinical markers, even in premanifest gene carriers. We investigated phonatory impairments as potential clinical markers and propose them for both diagnosis and gene carriers follow-up. We used two sets of features: Phonatory features and Modulation Power Spectrum Features. We found that phonation is not sufficient for the identification of sub-clinical disorders of premanifest gene carriers. According to our regression results, Phonatory features are suitable for the predictions of clinical performance in Huntington's Disease.Comment: To appear at INTERSPEECH 2020. 1 pages of supplementary material appear only in the arxiv version. Code to replicate https://github.com/bootphon/sustained-phonation-feature

    Vocal markers from sustained phonation in Huntington's Disease

    Get PDF
    To appear at INTERSPEECH 2020. 1 pages of supplementary material appear only in the arxiv version. Code to replicate https://github.com/bootphon/sustained-phonation-featuresInternational audienceDisease-modifying treatments are currently assessed in neurodegenerative diseases. Huntington's Disease represents a unique opportunity to design automatic sub-clinical markers, even in premanifest gene carriers. We investigated phonatory impairments as potential clinical markers and propose them for both diagnosis and gene carriers follow-up. We used two sets of features: Phonatory features and Modulation Power Spectrum Features. We found that phonation is not sufficient for the identification of sub-clinical disorders of premanifest gene carriers. According to our regression results, Phonatory features are suitable for the predictions of clinical performance in Huntington's Disease

    A new approach to digitized cognitive monitoring: validity of the SelfCog in Huntington's disease

    Get PDF
    Cognitive deficits represent a hallmark of neurodegenerative diseases, but evaluating their progression is complex. Most current evaluations involve lengthy paper-and-pencil tasks which are subject to learning effects dependent on the mode of response (motor or verbal), the countries’ language or the examiners. To address these limitations, we hypothesized that applying neuroscience principles may offer a fruitful alternative. We thus developed the SelfCog, a digitized battery that tests motor, executive, visuospatial, language and memory functions in 15 min. All cognitive functions are tested according to the same paradigm, and a randomization algorithm provides a new test at each assessment with a constant level of difficulty. Here, we assessed its validity, reliability and sensitivity to detect decline in early-stage Huntington’s disease in a prospective and international multilingual study (France, the UK and Germany). Fifty-one out of 85 participants with Huntington’s disease and 40 of 52 healthy controls included at baseline were followed up for 1 year. Assessments included a comprehensive clinical assessment battery including currently standard cognitive assessments alongside the SelfCog. We estimated associations between each of the clinical assessments and SelfCog using Spearman’s correlation and proneness to retest effects and sensitivity to decline through linear mixed models. Longitudinal effect sizes were estimated for each cognitive score. Voxel-based morphometry and tract-based spatial statistics analyses were conducted to assess the consistency between performance on the SelfCog and MRI 3D-T1 and diffusion-weighted imaging in a subgroup that underwent MRI at baseline and after 12 months. The SelfCog detected the decline of patients with Huntington’s disease in a 1-year follow-up period with satisfactory psychometric properties. Huntington’s disease patients are correctly differentiated from controls. The SelfCog showed larger effect sizes than the classical cognitive assessments. Its scores were associated with grey and white matter damage at baseline and over 1 year. Given its good performance in longitudinal analyses of the Huntington’s disease cohort, it should likely become a very useful tool for measuring cognition in Huntington’s disease in the future. It highlights the value of moving the field along the neuroscience principles and eventually applying them to the evaluation of all neurodegenerative diseases

    Cognitive decline in Huntington's disease in the Digitalized Arithmetic Task (DAT)

    Get PDF
    Background Efficient cognitive tasks sensitive to longitudinal deterioration in small cohorts of Huntington’s disease (HD) patients are lacking in HD research. We thus developed and assessed the digitized arithmetic task (DAT), which combines inner language and executive functions in approximately 4 minutes. Methods We assessed the psychometric properties of DAT in three languages, across four European sites, in 77 early-stage HD patients (age: 52 ± 11 years; 27 females), and 57 controls (age: 50 ± 10, 31 females). Forty-eight HD patients and 34 controls were followed up to one year with 96 participants who underwent MRI brain imaging (HD patients = 46) at baseline and 50 participants (HD patients = 22) at one year. Linear mixed models and Pearson correlations were used to assess associations with clinical assessment. Results At baseline, HD patients were less accurate (p = 0.0002) with increased response time (p<0.0001) when compared to DAT in controls. Test-retest reliability in HD patients ranged from good to excellent for response time (range: 0.63–0.79) and from questionable to acceptable for accuracy (range: r = 0.52–0.69). Only DAT, the Mattis Dementia Rating Scale, the Symbol Digit Modalities Test, and Total Functional Capacity scores were able to detect a decline within a one-year follow-up in HD patients (all p< 0.05). In contrast with all the other cognitive tasks, DAT correlated with striatal atrophy over time (p = 0.037) but not with motor impairment. Conclusions DAT is fast, reliable, motor-free, applicable in several languages, and able to unmask cognitive decline correlated with striatal atrophy in small cohorts of HD patients. This likely makes it a useful endpoint in future trials for HD and other neurodegenerative diseases

    Adaptation and validation of two annotation scales for assessing social skills in a corpus of multimodal collaborative interactions

    No full text
    Context Behavioral observation scales are important for understanding and assessing social skills. In the context of collaborative problem-solving (CPS) skills, considered essential in the 21st century, there are no validated scales in French that can be adapted to different CPS tasks. The aim of this study is to adapt and validate, by annotating a new video corpus of dyadic interactions that we have collected, two observational scales allowing us to qualitatively assess CPS skills: the Social Performance Rating Scale (SPRS) and the Social Skills of Collaboration Scale (SSC). Method The construct validity of these two scales was assessed by exploratory factor analysis and inter-item correlations. We also checked inter-judge agreement using inter-class correlation coefficients. Internal consistency was determined using Cronbach’s alpha and convergent and divergent validity by assessing correlations between the two scales and measures of depression and alexithymia. Finally, the discriminative properties of the two scales were analyzed by comparing the scores obtained by a group of anxious individuals and a non-anxious control group. Results The results show that our two scales have excellent inter-item correlations. Internal consistency is excellent (alpha SPRS =0.90; SSC = 0.93). Inter-rater agreement ranged from moderate to high. Finally, convergent validity was significant with the alexithymia scale, as was divergent validity with the depression scale. Anxious individuals had lower scores on both scales than non-anxious individuals. Conclusion Both scales show good psychometric properties for assessing social skills relevant to different collaborative tasks. They also identify individuals with difficulties in social interaction. Thus, they could allow monitoring the effectiveness of training social skills useful in CPS

    Self-Reported Social Relationship Capacities Predict Motor, Functional and Cognitive Decline in Huntington’s Disease

    No full text
    Huntington’s Disease (HD) is an inherited neurodegenerative disease characterized by a combination of motor, cognitive, and behavioral disorders. The social and behavioral symptoms observed in HD patients impact their quality of life and probably explain their relational difficulties, conflicts, and social withdrawal. In this study, we described the development of the Social Relationship Self-Questionnaire (SRSQ), a self-reporting questionnaire that assesses how HD patients perceived their social relationships. The scale was proposed for 66 HD patients at an early stage of the disease, 32 PreHD patients (individuals carrying the mutant gene without motor symptoms), and 66 controls. The HD patients were included in a prospective longitudinal follow-up for an average of 1.07 years with motor, functional, cognitive, and behavioral assessments. Based on the HD patients’ answers at baseline, we identified two domains in the SRSQ. The first domain was related to social motivation and correlated with cognitive performance. The second domain was related to emotional insight and correlated with behavioral symptoms such as apathy, anxiety, and irritability. We discovered that both SRSQ domain scores at baseline predicted future motor, functional, and cognitive decline in HD

    Emotion expression through spoken language in Huntington disease

    No full text
    International audiencePatients with Huntington's disease suffer from disturbances in the perception of emotions; they do not correctly read the body, vocal and facial expressions of others. With regard to the expression of emotions, it has been shown that they are impaired in expressing emotions through face but up until now, little research has been conducted about their ability to express emotions through spoken language.To better understand emotion production in both voice and language in Huntington's Disease (HD), we tested 115 individuals: 68 patients (HD), 22 participants carrying the mutant HD gene without any motor symptoms (pre-manifest HD), and 25 controls in a single-centre prospective observational follow-up study. Participants were recorded in interviews in which they were asked to recall sad, angry, happy, and neutral stories. Emotion expression through voice and language was investigated by comparing the identifiability of emotions expressed by controls, preHD and HD patients in these interviews. To assess separately vocal and linguistic expression of emotions in a blind design, we used machine learning models instead of a human jury performing a forced-choice recognition test. Results from this study showed that patients with HD had difficulty expressing emotions through both voice and language compared to preHD participants and controls, who behaved similarly and above chance. In addition, we did not find any differences in expression of emotions between preHD and healthy controls. We further validated our newly proposed methodology with a human jury on the speech produced by the controls. These results are consistent with the hypothesis that emotional deficits in HD are caused by impaired sensori-motor representations of emotions, in line with embodied cognition theories. This study also shows how machine learning models can be leveraged to assess emotion expression in a blind and reproducible way

    Predicting clinical scores in Huntington’s disease: a lightweight speech test

    No full text
    International audienceObjectives Using brief samples of speech recordings, we aimed at predicting, through machine learning, the clinical performance in Huntington's Disease (HD), an inherited Neurodegenerative disease (NDD). Methods We collected and analyzed 126 samples of audio recordings of both forward and backward counting from 103 Huntington's disease gene carriers [87 manifest and 16 premanifest; mean age 50.6 (SD 11.2), range (27-88) years] from three multicenter prospective studies in France and Belgium (MIG-HD (ClinicalTrials.gov NCT00190450); BIO-HD (Clini-calTrials.gov NCT00190450) and Repair-HD (ClinicalTrials.gov NCT00190450). We pre-registered all of our methods before running any analyses, in order to avoid inflated results. We automatically extracted 60 speech features from blindly annotated samples. We used machine learning models to combine multiple speech features in order to make predictions at individual levels of the clinical markers. We trained machine learning models on 86% of the samples, the remaining 14% constituted the independent test set. We combined speech features with demographics variables (age, sex, CAG repeats, and burden score) to predict cognitive, motor, and functional scores of the Unified Huntington's disease rating scale. We provided correlation between speech variables and striatal volumes. Results Speech features combined with demographics allowed the prediction of the individual cognitive, motor, and functional scores with a relative error from 12.7 to 20.0% which is better than predictions using demographics and genetic information. Both mean and standard deviation of pause durations during backward recitation and clinical scores correlated with striatal atrophy (Spearman 0.6 and 0.5-0.6, respectively). Interpretation Brief and examiner-free speech recording and analysis may become in the future an efficient method for remote evaluation of the individual condition in HD and likely in other NDD
    corecore