5,409 research outputs found

    Cold gas in group-dominant elliptical galaxies

    Get PDF
    We present IRAM 30m telescope observations of the CO(1-0) and (2-1) lines in a sample of 11 group-dominant elliptical galaxies selected from the CLoGS nearby groups sample. Our observations confirm the presence of molecular gas in 4 of the 11 galaxies at >4 sigma significance, and combining these with data from the literature we find a detection rate of 43+-14%, comparable to the detection rate for nearby radio galaxies, suggesting that group-dominant ellipticals may be more likely to contain molecular gas than their non-central counterparts. Those group-dominant galaxies which are detected typically contain ~2x10^8 Msol of molecular gas, and although most have low star formation rates (<1 Msol/yr) they have short depletion times, indicating that the gas must be replenished on timescales ~100 Myr. Almost all of the galaxies contain active nuclei, and we note while the data suggest that CO may be more common in the most radio-loud galaxies, the mass of molecular gas required to power the active nuclei through accretion is small compared to the masses observed. We consider possible origin mechanisms for the gas, through cooling of stellar ejecta within the galaxies, group-scale cooling flows, and gas-rich mergers, and find probable examples of each type within our sample, confirming that a variety of processes act to drive the build up of molecular gas in group-dominant ellipticals.Comment: 9 pages, 5 postscript figures, 4 tables, accepted by A&A. Revised throughout in response to referee's comments, including updates to Table 1 and Figure 4, and addition of Figure

    An Application of Feynman-Kleinert Approximants to the Massive Schwinger Model on a Lattice

    Get PDF
    A trial application of the method of Feynman-Kleinert approximants is made to perturbation series arising in connection with the lattice Schwinger model. In extrapolating the lattice strong-coupling series to the weak-coupling continuum limit, the approximants do not converge well. In interpolating between the continuum perturbation series at large fermion mass and small fermion mass, however, the approximants do give good results. In the course of the calculations, we picked up and rectified an error in an earlier derivation of the continuum series coefficients.Comment: 16 pages, 4 figures, 5 table

    The Coupled Cluster Method in Hamiltonian Lattice Field Theory: SU(2) Glueballs

    Get PDF
    The glueball spectrum within the Hamiltonian formulation of lattice gauge theory (without fermions) is calculated for the gauge group SU(2) and for two spatial dimensions. The Hilbert space of gauge-invariant functions of the gauge field is generated by its parallel-transporters on closed paths along the links of the spatial lattice. The coupled cluster method is used to determine the spectrum of the Kogut-Susskind Hamiltonian in a truncated basis. The quality of the description is studied by computing results from various truncations, lattice regularisations and with an improved Hamiltonian. We find consistency for the mass ratio predictions within a scaling region where we obtain good agreement with standard lattice Monte Carlo results.Comment: 13 pages, 7 figure

    Convergent expansions for properties of the Heisenberg model for CaV4_4O9_9

    Full text link
    We have carried out a wide range of calculations for the S=1/2S=1/2 Heisenberg model with nearest- and second-neighbor interactions on a two-dimensional lattice which describes the geometry of the vanadium ions in the spin-gap system CaV4_4O9_9. The methods used were convergent high-order perturbation expansions (``Ising'' and ``Plaquette'' expansions at T=0T=0, as well as high-temperature expansions) for quantities such as the uniform susceptibility, sublattice magnetization, and triplet elementary excitation spectrum. Comparison with the data for CaV4_4O9_9 indicates that its magnetic properties are well described by nearest-neighbor exchange of about 200K in conjunction with second-neighbor exchange of about 100K.Comment: Uses REVTEX macros. Four pages in two-column format, five postscript figures. Files packaged using uufile

    Spectral weight contributions of many-particle bound states and continuum

    Full text link
    Cluster expansion methods are developed for calculating the spectral weight contributions of multiparticle excitations - continuum and bound states - to high orders. A complete 11th order calculation is carried out for the alternating Heisenberg chain. For λ=0.27\lambda=0.27, relevant to the material Cu(NO3)2.2.5D2OCu(NO_3)_2.2.5D_2O, we present detailed spectral weights for the two-triplet continuum and all bound states. We also examine variation of the relative weights of one and two-particle states with bond alternation from the dimerized to the uniform chain limit.Comment: 4 pages, 5 figures, revte

    Series Expansions for the Massive Schwinger Model in Hamiltonian lattice theory

    Get PDF
    It is shown that detailed and accurate information about the mass spectrum of the massive Schwinger model can be obtained using the technique of strong-coupling series expansions. Extended strong-coupling series for the energy eigenvalues are calculated, and extrapolated to the continuum limit by means of integrated differential approximants, which are matched onto a weak-coupling expansion. The numerical estimates are compared with exact results, and with finite-lattice results calculated for an equivalent lattice spin model with long-range interactions. Both the heavy fermion and the light fermion limits of the model are explored in some detail.Comment: RevTeX, 10 figures, add one more referenc

    Spin Dependence of Correlations in Two-Dimensional Quantum Heisenberg Antiferromagnets

    Full text link
    We present a series expansion study of spin-S square-lattice Heisenberg antiferromagnets. The numerical data are in excellent agreement with recent neutron scattering measurements. Our key result is that the correlation length for S>1/2 strongly deviates from the exact T->0 (renormalized classical, or RC) scaling prediction for all experimentally and numerically accessible temperatures. We note basic trends with S of the experimental and series expansion correlation length data and propose a scaling crossover scenario to explain them.Comment: 5 pages, REVTeX file. PostScript file for the paper with embedded figures available via WWW at http://xxx.lanl.gov/ps/cond-mat/9503143

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Density Matrix Renormalisation Group Approach to the Massive Schwinger Model

    Get PDF
    The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of `half-asymptotic' particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR

    A New Finite-lattice study of the Massive Schwinger Model

    Get PDF
    A new finite lattice calculation of the low lying bound state energies in the massive Schwinger model is presented, using a Hamiltonian lattice formulation. The results are compared with recent analytic series calculations in the low mass limit, and with a new higher order non-relativistic series which we calculate for the high mass limit. The results are generally in good agreement with these series predictions, and also with recent calculations by light cone and related techniques
    • …
    corecore