102 research outputs found
Magnetic Reynolds number dependence of reconnection rate and flow structure of the self-similar evolution model of fast magnetic reconnection
This paper investigates Magnetic Reynolds number dependence of the
``self-similar evolution model'' (Nitta et al. 2001) of fast magnetic
reconnection. I focused my attention on the flow structure inside and around
the reconnection outflow, which is essential to determine the entire
reconnection system (Nitta et al. 2002). The outflow is consist of several
regions divided by discontinuities, e.g., shocks, and it can be treated by a
shock-tube approximation (Nitta 2004). By solving the junction conditions
(e.g., Rankine-Hugoniot condition), the structure of the reconnection outflow
is obtained. Magnetic reconnection in most astrophysical problems is
characterized by a huge dynamic range of its expansion ( for typical
solar flares) in a free space which is free from any influence of external
circumstances. Such evolution results in a spontaneous self-similar expansion
which is controlled by two intrinsic parameters: the plasma- and the
magnetic Reynolds number. The plasma- dependence had been investigated in
our previous paper. This paper newly clarifies the relation between the
reconnection rate and the inflow structure just outside the Petschek-like slow
shock: As the magnetic Reynolds number increases, strongly converging inflow
toward the Petschek-like slow shock forms, and it significantly reduces the
reconnection rate.Comment: 16 pages. to appear in ApJ (2006 Jan. 20 issue
Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey
This paper provides a tutorial and survey for a specific kind of illustrative
visualization technique: feature lines. We examine different feature line
methods. For this, we provide the differential geometry behind these concepts
and adapt this mathematical field to the discrete differential geometry. All
discrete differential geometry terms are explained for triangulated surface
meshes. These utilities serve as basis for the feature line methods. We provide
the reader with all knowledge to re-implement every feature line method.
Furthermore, we summarize the methods and suggest a guideline for which kind of
surface which feature line algorithm is best suited. Our work is motivated by,
but not restricted to, medical and biological surface models.Comment: 33 page
Magnetohydrodynamic equilibria of a cylindrical plasma with poloidal mass flow and arbitrary cross section shape
The equilibrium of a cylindrical plasma with purely poloidal mass flow and
cross section of arbitrary shape is investigated within the framework of the
ideal MHD theory. For the system under consideration it is shown that only
incompressible flows are possible and, conscequently, the general two
dimensional flow equilibrium equations reduce to a single second-order
quasilinear partial differential equation for the poloidal magnetic flux
function , in which four profile functionals of appear. Apart from
a singularity occuring when the modulus of Mach number associated with the
Alfv\'en velocity for the poloidal magnetic field is unity, this equation is
always elliptic and permits the construction of several classes of analytic
solutions. Specific exact equlibria for a plasma confined within a perfectly
conducting circular cylindrical boundary and having i) a flat current density
and ii) a peaked current density are obtained and studied.Comment: Accepted to Plasma Physics & Controlled Fusion, 14 pages, revte
Electrical Characterization of Thermally Activated Defects in n-Type Float-Zone Silicon
Float-zone (FZ) silicon is usually assumed to be bulk defect-lean and stable. However, recent studies have revealed that detrimental defects can be thermally activated in FZ silicon wafers and lead to a reduction of carrier lifetime by up to two orders of magnitude. A robust methodology which combines different characterization techniques and passivation schemes is used to provide new insight into the origin of degradation of 1 Ω·cm n-type phosphorus doped FZ silicon (with nitrogen doping during growth) after annealing at 500 °C. Carrier lifetime and photoluminescence experiments are first performed with temporary room temperature surface passivation which minimizes lifetime changes which can occur during passivation processes involving thermal treatments. Temperature- and injection-dependent lifetime spectroscopy is then performed with a more stable passivation scheme, with the same samples finally being studied by deep level transient spectroscopy (DLTS). Although five defect levels are found with DLTS, detailed analysis of injection-dependent lifetime data reveals that the most detrimental defect levels could arise from just two independent single-level defects or from one two-level defect. The defect parameters for these two possible scenarios are extracted and discussed
Implied Open‐circuit Voltage Imaging via a Single Bandpass Filter Method—Its First Application in Perovskite Solar Cells
A novel, camera-based method for direct implied open-circuit voltage (iV) imaging via the use of a single bandpass filter (s-BPF) is developed for large-area photovoltaic solar cells and precursors. The photoluminescence (PL) emission is imaged using a narrow BPF with centre energy inside the high-energy tail of the PL emission, utilising the close-to-unity and nearly constant absorptivity of typical photovoltaic devices in this energy range. As a result, the exact value of the sample\u27s absorptivity within the BPF transmission band is not required. The use of an s-BPF enables a fully contactless approach to calibrate the absolute PL photon flux for spectrally integrated detectors, including cameras. The method eliminates the need for knowledge of the imaging system spectral response. Through an appropriate choice of the BPF centre energy, a range of absorber compositions or a single absorber with different surface morphologies, such as planar and textured, can be imaged, all without the need for additional detection optics. The feasibility of this s-BPF method is first validated. The relative error in iV is determined to be ≤1.5%. The method is then demonstrated on device stacks with two different perovskite compositions commonly used in single-junction and monolithic tandem solar cells
Implied Open‐circuit Voltage Imaging via a Single Bandpass Filter Method—Its First Application in Perovskite Solar Cells
A direct, camera-based implied open-circuit voltage (iVOC) imaging method via the novel use of a single bandpass filter (s-BPF) is developed for large-area photovoltaic solar cells and solar cell precursors. This method images the photoluminescence (PL) emission using a narrow BPF with centre energy in the high-energy tail of the PL emission taking advantage of the close-to-unity absorptivity of typical photovoltaic devices with low variability in this energy range. As a result, the exact value of the sample\u27s absorptivity within the BPF transmission band is not required. The use of a s-BPF enables the adaptation of a fully contactless approach to calibrate the absolute PL photon flux for camera-based spectrally-integrated imaging tools. The method eliminates the need for knowledge of the imaging system spectral response and the use of the emission and excitation spectral shapes. Through an appropriate choice of the BPF centre energy, a range of absorber compositions or a single absorber with different surface morphologies (e.g., planar vs textured) can be imaged, all without the need for additional detection optics. The feasibility of this s-BPF method is first assessed using a high-quality CsFAMAPb(IBr) perovskite neat film. The error in iVOC is determined to be less than 1.5%. The efficacy of the method is then demonstrated on device stacks with two different perovskite compositions commonly used in single-junction and monolithic tandem solar cells
Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning)
modes in strongly nonaxisymmetric toroidal systems is difficult to analyze
numerically owing to the singular nature of ideal MHD caused by lack of an
inherent scale length. In this paper, ideal MHD is regularized by using a
-space cutoff, making the ray tracing for the WKB ballooning formalism a
chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier
spectrum needed for resolving toroidally localized ballooning modes with a
global eigenvalue code is estimated from the Weyl formula. This
phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication
in Phys. Rev. Letter
Ballooning Instability in Polar Caps of Accreting Neutron Stars
We assess the stability of Kruskal-Schwarzschild (magnetic Rayleigh-Taylor)
type modes for accreted matter on the surface of a neutron star confined by a
strong (>= 1.E12 G) magnetic field. Employing the energy principle to analyze
the stability of short-wavelength ballooning modes, we find that line-tying to
the neutron star crust stabilizes these modes until the overpressure at the top
of the neutron star crust exceeds the magnetic pressure by a factor ~ 8(a/h),
where a and h are respectively the lateral extent of the accretion region and
the density scale height. The most unstable modes are localized within a
density scale height above the crust. We calculate the amount of mass that can
be accumulated at the polar cap before the onset of instability.Comment: 8 pages, 2 figures, accepted for publication by ApJ, uses AASTEX 5.0
and emulateapj5.sty (included
Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV
There is an urgent need to understand the nature of immune responses against SARS-CoV-2, to inform risk-mitigation strategies for people living with HIV (PLWH). Here we show that the majority of PLWH with ART suppressed HIV viral load, mount a detectable adaptive immune response to SARS-CoV-2. Humoral and SARS-CoV-2-specific T cell responses are comparable between HIV-positive and negative subjects and persist 5-7 months following predominately mild COVID-19 disease. T cell responses against Spike, Membrane and Nucleoprotein are the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. We further show that the overall magnitude of SARS-CoV-2-specific T cell responses relates to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH. These findings suggest that inadequate immune reconstitution on ART, could hinder immune responses to SARS-CoV-2 with implications for the individual management and vaccine effectiveness in PLWH
Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH
- …