2 research outputs found

    Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor — Computational approach

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/ j.mvr.2019.01.005. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The solute transport distribution in a tumor is an important criterion in the evaluation of the cancer treatment efficacy. The fraction of killed cells after each treatment can quantify the therapeutic effect and plays as a helpful tool to evaluate the chemotherapy treatment schedules. In the present study, an image-based spatio-temporal computational model of a solid tumor is provided for calculation of interstitial fluid flow and solute transport. Current model incorporates heterogeneous microvasculature for angiogenesis instead of synthetic mathematical modeling. In this modeling process, a comprehensive model according to Convection-Diffusion-Reaction (CDR) equations is employed due to its high accuracy for simulating the binding and the uptake of the drug by tumor cells. Based on the velocity and the pressure distribution, transient distribution of the different drug concentrations (free, bound, and internalized) is calculated. Then, the fraction of killed cells is obtained according to the internalized concentration. Results indicate the dependence of the drug distribution on both time and space, as well as the microvasculature density. Free and bound drug concentration have the same trend over time, whereas, internalized and total drug concentration increases over time and reaches a constant value. The highest amount of concentration occurred in the tumor region due to the higher permeability of the blood vessels. Moreover, the fraction of killed cells is approximately 78.87% and 24.94% after treatment with doxorubicin for cancerous and normal tissues, respectively. In general, the presented methodology may be applied in the field of personalized medicine to optimize patient-specific treatments. Also, such image-based modeling of solid tumors can be used in laboratories that working on drug delivery and evaluating new drugs before using them for any in vivo or clinical studies

    Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application

    No full text
    The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression
    corecore