7 research outputs found

    INTELLIGENT ROUTE TO DESIGN EFCIENT CO2 REDUCTION ELECTROCATALYSTS USING ANFIS OPTIMIZED BYGA AND PSO

    Get PDF
    Recently, electrochemical reduction of CO2 into value-added fuels has been noticed as a promising process to decrease CO2 emissions. The development of such technology is strongly depended upon tuning the surface properties of the applied electrocatalysts. Considering the high cost and time-consuming experimental investigations, computational methods, particularly machine learning algorithms, can be the appropriate approach for efficiently screening the metal alloys as the electrocatalysts. In doing so, to represent the surface properties of the electrocatalysts numerically, d-band theory-based electronic features and intrinsic properties obtained from density functional theory (DFT) calculations were used as descriptors. Accordingly, a dataset containg 258 data points was extracted from the DFT method to use in machine learning method. The primary purpose of this study is to establish a new model through machine learning methods; namely, adaptive neuro-fuzzy inference system (ANFIS) combined with particle swarm optimization (PSO) and genetic algorithm (GA) for the prediction of *CO (the key intermediate) adsorption energy as the efficiency metric. The developed ANFIS–PSO and ANFIS–GA showed excellent performance with RMSE of 0.0411 and 0.0383, respectively, the minimum errors reported so far in this field. Additionally, the sensitivity analysis showed that the center and the filling of the d-band are the most determining parameters for the electrocatalyst surface reactivity. The present study conveniently indicates the potential and value of machine learning in directing the experimental efforts in alloy system electrocatalysts for CO2 reduction

    Multiplexor 4 x 1 de alto rendimiento basado en un transistor de efecto de campo de nanotubos de carbono de pared simple con lógica de transistor de paso similar a CMOS

    No full text
    En los últimos años, según muchos estudios, el transistor de efecto de campo de nanotubos de carbono (CNTFET) mostró un alto rendimiento en muchos circuitos lógicos debido a sus propiedades y en comparación con otros homólogos de silicio. Sin embargo, garantizar estos beneficios sigue siendo un desafío para la aplicación de circuitos integrados a nanoescala. Debido a sus excelentes características eléctricas y mecánicas, CNTFET es uno de los sustitutos más prometedores de la tecnología de transistores de efecto de campo semiconductores de óxido metálico (MOSFET). Aunque estas características son adecuadas para implementar en varios circuitos digitales prácticos, los circuitos basados en CNTFET resolverán enormes problemas de fabricación debido a su tamaño. En este artículo, mostramos que se podría obtener una simplificación importante mediante el diseño de circuitos integrados basados en CNTFET a través de una configuración lógica de transistor de paso tipo CMOS en el uso de transistores de efecto de campo, en lugar de la configuración tradicional de semiconductores de óxido de metal complementario (CMOS). La configuración PTL similar a CMOS crea una simplificación notable del diseño del circuito basado en CNTFET, una mayor velocidad del circuito y una gran reducción en el consumo de energía. Hay muchos problemas que se enfrentan al integrar un alto nivel de muchos transistores, como el efecto de canal corto, la disipación de potencia, el escalado de los transistores, etc. Para superar estos problemas, los Nanotubos de Carbono (CNT) tienen aplicaciones prometedoras en el campo de la electrónica. Los resultados de la simulación presentados y el consumo de energía en comparación con los diseños CMOS convencionales. La comparación de resultados probó que el diseño basado en CNTFET es capaz de ahorrar energía de manera eficiente y un rendimiento de alta velocidad

    Dynamics of four-wave mixing in flared-waveguide semiconductor optical amplifiers

    No full text
    A detailed investigation of the performance of four-wave mixing (FWM) in non-flared- and flared-waveguide semiconductor optical amplifiers (FW-SOAs) has been reported. A standard rate equation model has been used which considers the effect of the distribution of carrier density of the transverse direction based on numerical calculation along with the nonlinear Schrödinger equation (NSE). The results have been reported in saturated and unsaturated states of the FW-SOAs. Features of the FWM pulse, such as peak pulse deviation, pulse width, and pulse energy along the length of the SOA cavity have been studied and compared in detail for three waveguide geometrics (non-flared, linearly flared, and exponentially flared). Evolution in time and spectral domain of the FWM pulse has been shown for three different structures. It has been found that the FW-SOAs perform better under saturated regime since the FWM pulse has less distortion compared to the non-flared SOA. In an FW-SOA, pulse-width variations of the FWM pulse are almost insignificant whereas in the non-flared SOA, the FWM pulse suffers from broadening
    corecore