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Intelligent route to design efficient 
 CO2 reduction electrocatalysts 
using ANFIS optimized by GA 
and PSO
Majedeh Gheytanzadeh 1, Alireza Baghban 2*, Sajjad Habibzadeh 1*, Karam Jabbour 3, 
Amin Esmaeili 4, Amin Hamed Mashhadzadeh 5 & Ahmad Mohaddespour 3

Recently, electrochemical reduction of  CO2 into value-added fuels has been noticed as a promising 
process to decrease  CO2 emissions. The development of such technology is strongly depended upon 
tuning the surface properties of the applied electrocatalysts. Considering the high cost and time-
consuming experimental investigations, computational methods, particularly machine learning 
algorithms, can be the appropriate approach for efficiently screening the metal alloys as the 
electrocatalysts. In doing so, to represent the surface properties of the electrocatalysts numerically, 
d-band theory-based electronic features and intrinsic properties obtained from density functional 
theory (DFT) calculations were used as descriptors. Accordingly, a dataset containg 258 data points 
was extracted from the DFT method to use in machine learning method. The primary purpose of this 
study is to establish a new model through machine learning methods; namely, adaptive neuro-fuzzy 
inference system (ANFIS) combined with particle swarm optimization (PSO) and genetic algorithm 
(GA) for the prediction of *CO (the key intermediate) adsorption energy as the efficiency metric. 
The developed ANFIS–PSO and ANFIS–GA showed excellent performance with RMSE of 0.0411 and 
0.0383, respectively, the minimum errors reported so far in this field. Additionally, the sensitivity 
analysis showed that the center and the filling of the d-band are the most determining parameters 
for the electrocatalyst surface reactivity. The present study conveniently indicates the potential and 
value of machine learning in directing the experimental efforts in alloy system electrocatalysts for  CO2 
reduction.

Transportation, power plants, and energy-intensive industries are some of the industrial activities that commonly 
emit greenhouse gases including  CO2,  CH4, and  NOx. Around 75% of greenhouse gas emissions are carbon 
dioxide  emissions1, which contribute to the 1.5 °C rise in global temperature that is considered to be a reasonably 
large amount. As a result, during the past 20 years, economic sustainability has gained international attention, 
drawing experts in the field of the environment, decision-makers, and international organizations from many 
nations. The United Nations Framework Convention on Climate Change was founded in 1992 as a result of this 
phenomena. The Kyoto Protocol and the 2015 Paris Agreement were later created in 1997 and 2015, respectively, 
to fight global warming by regulating greenhouse gas  emissions2.

Nowadays, one of the significant challenges in the energy sector that should be effectively addressed is the 
development of sustainable energy resources. This is because the current energy conversion technologies cannot 
meet the energy  requirement3. The electrochemical reduction of carbon dioxide is a necessary process that uses 
electricity from renewables (solar, wind, etc.) to produce fuels or value-added chemicals from water and  CO2

4. 
The *CO is the primary intermediate in the reduction of  CO2. Indeed, as explained in Hori et al.  study5, it is the 
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only molecule having single carbon, which shows a product spectrum similar to  CO2 on a copper electrode. 
In this process, the determining component in providing an efficient conversion relies on the  electrocatalyst6,7. 
Several experiments and computations have been performed to find and prepare new materials as the electro-
catalyst for the  CO2  electroreduction8–13.

Therefore, understanding the surface chemical reactivity and the bond-breaking and -forming on the electro-
catalyst’s surface is required to describe such a surface phenomenon. A significant volume of concepts has been 
established for the adsorption of the simple molecules onto the surface of transition-metal  electrocatalysts14–18, 
among which the Sabatier principle is a main comprehensive  concept19. It explains that the crucial reaction 
intermediate should have enough adsorption strength to increase the activity of the electrocatalyst; too strong or 
weak binding causes difficult product desorption and inadequate reactant activation, respectively. Thus, the reac-
tivity as the function of binding energies can be described as a volcano-shaped  plot20. Nørskov and co-workers, 
through a series of pioneering studies, claimed that the chemisorption of the adsorbate is severely dependent 
on the surface electronic structure (d-band  theory21).

According to the d-band theory, the strength of the bond is given by the construction of the bonding and 
antibonding states, between the transition metal d states and the adsorbate valence states, and antibonding states 
energy comparative to the Fermi level (filling). The antibonding states are upper the d states, making the energy 
of the d states center a well initial representor of the bond strength. The greater d-band center in energy results 
in higher adsorbate–metal antibonding states, less occupation of antibonding states, and stronger adsorption 
 bonds22. Although due to the recent improvements in electronic structure approaches (primarily density func-
tional theory (DFT)), the d-band theory could provide understandings of the surface activity for the transition 
metals along with a minor group of  alloys3,23–29, it could not explain the measured activity in some  cases30–32. This 
could be probably since the spread in energy states was not considered. The definition of parameters such as the 
upper edge of the d-band  (Eu) and the d-band width  (Wd) by using Hilbert transform of the projected density of 
states (DOS) has improved the correlation between the activity and the d-band  center31.

Inspired by the d-band chemisorption theory, the thought is to develop a computational relation between 
the electronic and intrinsic properties (descriptors) of clean surfaces and *CO adsorption energy. This helps to 
perform the material screening employing these descriptors, suppressing the costly and time-consuming experi-
ments. While many linear relations between the d-band theory characteristics and the binding energy of the 
adsorbate have been  published31–33, machine learning (ML) techniques were used in the present study in order 
to incorporate the possible nonlinear relation between the parameters, raise the accuracy of the prediction, and 
be more comprehensive.

ML techniques have been widely used to explore and investigate diverse phenomena in chemical 
 engineering34–41. In the present study, Ma et al.42 predicted the *CO binding energy on various alloy systems 
using artificial neural networks (ANN) algorithm with root mean square error (RMSE) of 0.13 eV. In another 
study, Li et al.43 obtained almost the same accuracy (RMSE ∼ 0.12 eV) when using the same ML algorithm but 
geometric descriptors as inputs. Recently, Noh et al.44 proposed an ML model with RMSE of 0.05 eV. Unlike the 
other studies, they used two non-ab Initio input properties to forecast the binding energy of *CO in different 
systems. Since several aspects of an accurate model are still under question, it is necessary to establish a new 
model that enhances the prediction’s accuracy and decreases the model’s uncertainty.

A fuzzy method is one of the soft computing methods which has a significant capacity in modeling compli-
cated and nonlinear systems. Adaptive neuro-fuzzy inference system (ANFIS), a hybrid of ANN and the fuzzy 
inference system (FIS), can anticipate the nonlinear systems  significantly45–48. The suggested model is based on 
the combination of genetic algorithm (GA) and particle swarm optimization (PSO) to ANFIS. To our knowledge, 
this investigation is the first attempt to apply ANFIS–GA and ANFIS–PSO in  CO2 electroreduction process. In 
this research, the *CO adsorption energy in the  CO2 electroreduction process was anticipated by the ANFIS–PSO 
and ANFIS–GA models. The PSO and GA were interconnected to ANFIS to balance the model’s complication and 
their generality capacity. Some intrinsic features and DFT-calculated electronic features of clean alloy surfaces, 
explicitly, parameters of the d-band distribution were used as inputs of the model.

Methodology
ANFIS background. The ANFIS structure used in this study includes five layers and thirteen inputs, where 
the Takagi–Sugeno system was employed as FIS. The fuzzy rules are presented as  follows46,49:

where k1, k2, and k0 represent the function parameters of output (f) and A and B indicate the membership func-
tions for inputs (x1 and x2). The basic arrangement of ANFIS is a feedforward system that comprises five layers 
having several  functions50 (Fig. 1). The learning structure of ANFIS is well discussed by several  studies51–53.

The ANFIS with five layers is  explained54:
In Layer 1, fuzzification, the whole of the nodes are supposed to be adaptive inputs.

where n and both of µAi(x1) and µBi−2(x2) are the number of fuzzy sets per input variables and functions of 
Gaussian membership, respectively.

Rule i :

If x1 and x2 areA1 andB1, respectively, then fi = ki1x1 + ki2x2 + ki0

(1)O1
i = µAi(x1) i = 1, 2, . . . , n

(2)O1
i = µBi−2(x2) i = 3, 4, . . . , n
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Layer 2, which is the product layer, the output of this layer is the product of the input signal based on:

Layer 3, named the normalized layer, a circle node is used to represent each node. The normalization func-
tion is defined as:

Layer 4, defuzzification, every node adapted with the following function:

where (ki1x + ki2y + ki0) and wi are the variable sets of wi ’s node and the output of Layer 3, respectively.
In Layer 5, which is the output layer, summation of the arrival signals creates the output model:

Generally, an adaptive FIS comprises two diverse sections, the premise section and the consequent  Section47, 
optimized with various methods. A hybrid learning optimization method is developed, including the least squares 
method and the gradient descent method. In the present study, the fuzzy c-means (FCM) process is intercon-
nected to ANFIS algorithm to forecast *CO adsorption energy.

FCM clustering. FCM is a method for data clustering where each point of data categorizes in clusters with 
different membership grades. FCM distributes a group of n vector xi , i = 1, 2, . . . , n into fuzzy categories and 
find a center for the cluster in each category such that the cost function is minimized according to the dissimi-
larity value.

By membership matrix U, the cost function can be calculated as:

here vK=vka , k = 1, .., k, a = 1, …, p stands for the center of mass of kth cluster. In addition, m refers to the cluster’ 
degree.

Algorithm should solve U and v1, . . . , vK by minimizing Eqs. (8 and 9).

Minimizing task is carried out by the following cost function.

(3)O2
i = ωi = µAi(x1)µBi(x2) i = 1 or 2

(4)O3
i = wi =

wi

w1 + w2

i = 1 or 2

(5)O4
i = wifi = wi

(

ki1x + ki2y + ki0
)

i = 1 or 2

(6)O5
i = overall output =

∑

i
wifi =

∑

i wifi
∑

i wi
i = 1, 2

(7)J(U , v1, . . . , vK ) =
∑n

i=1

∑k

k=1
(uik)

md2(xi , vK )

(8)
uik =

1

∑K
l=1

(
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)
2
m−1

(9)vk =
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mxi
∑n

i=1 (Uik)
m

Figure 1.  ANFIS structure.
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Nikafshan Rad et al.46 presented the FCM algorithm in detail.

PSO algorithm. PSO is a population-based optimization approach that randomly selects a population of 
particles or solutions, then seeks optima through updating generation in each  iteration39. Each particle is updated 
based on two particles: “pbest” and “gbest.” The “pbest” is the own best answer reached so far by particles, and the 
“gbest” is the total best solution obtained among the entire particles. Figure 2 shows the structure of PSO. In this 
scheme, random apportion velocities and positions are used at the first stage to start the initial population. The 
next step is to approximate each particle by regression analysis. When the stopping condition is satisfied by the 
best fitness rate of the particle, the process must be ended, and the factors should be reported. Suppose the fitness 
rate is not satisfactory for the ending criterion. In that case, the particles’ velocity and positions must be updated 
under two situations: In the first situation, if the particle fitness is larger than the gbest fitness, the related factors 
of gbest fitness should be updated. Second, if particle fitness is greater than the fitness of pbest, the pbest fitness 
factors should be updated. The other particles should be approximated through the second stage again.

Genetic algorithm. GA is a general accidental exploration tool for optimization based on the ideas of natu-
ral selection and genetics. It uses probabilistic transition rules instead of definite ones, which results in capacity 
to investigate big solution spaces. GA includes three stages: (a) population initialization, (b) operators of GA 
(selection, crossover, and mutation), and (c)  evaluation49,55.

(1) Population initialization: In GA, each solution is named chromosome or string and is described via a series 
of different values. The strings (solutions) presenting each limitation or optimization issue necessities must 
be included in the initial population.

(2) Operators of GA:

(1) Selection: It chooses solutions or individuals with high fitness values with a higher chance of surviving. 
A combination of Elitist and Tournament approaches is employed in this research through which 
the best solutions are chosen according to their fitness values and passed straight to the following 
generation.

(10)J(U) =
∑K

k=1

(
∑n

i=1

∑n
j=1

(

(uik)
m
(

ujk
)m

dij
)

2
∑n

s=1 (usk)
m

)

Figure 2.  Scheme of the (a) PSO algorithm, (b) GA algorithm.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20859  | https://doi.org/10.1038/s41598-022-25512-8

www.nature.com/scientificreports/

(2) Crossover: In this one, two chosen individuals exchange part of their genes for making novel indi-
viduals for the following generation. Here, the scattered random method is used to create a new 
chromosome.

(3) Mutation: It makes a random change to the info within the strings or chromosomes. Occasionally, 
gene mutation occurs with a low possibility of transforming into new genes. The mutation operation 
increases the exploration ability of the search scheme to forbid to trap into local optima.

(3) Evaluation: The function of fitness is applied to fit each individual solution.

The scheme of GA is illustrated in Fig. 249,56.

Modeling procedure
Data collection. In order to establish a relationship between the *CO binding energy and properties of elec-
trocatalyst surfaces, a set of {100}-terminated bimetallic surfaces in the form of B@A, A-B@A, and  A3B@A have 
been considered as illustrated in Fig. 3. In the B@A structure, group VIII and IB metals (Cu, Au, Ni, Ag, Pt, and 
Pd) were chosen for A and B, but in the other structures, B contains the post-transition and the d-block metals. 
The required properties as input parameters were obtained through geometry optimization in DFT calculations. 
The input parameters are classified into two groups: primary features, electronic properties of the d-states distri-
bution, and secondary properties, which are physical constants of the host metal. The secondary properties were 
used for a well description of the chemical bonding on a sequences of metal surfaces. The width (square root of 
the 2nd central moment, Wd), center (1st moment relative to the Fermi level, εd), filling (zeroth moment up to 
the Fermi level, f), the local Pauling electronegativity (χ), skewness (3rd standardized moment, γ1), and kurtosis 
(4th standardized moment, γ2) are primary features while work function (W), ionization potential (IE), square 
of adsorbate–metal interatomic d coupling matrix element  (V2

ad), spatial extent of metal d-orbitals (rd), atomic 
radius (r0), Pauling electronegativity (χ0), and electron affinity (EA) are the secondary parameters. The 258 data 
points are taken from Ma et al.  report42 and listed in Table S1. To develop the most precise model, randomly, 20% 
of the entire data was divided as the testing data to assay the model reliability and the remainder of them was 
used as the training data to study the *CO binding energy in  CO2 electroreduction systems.

Model evaluations. The statistical parameters (Eqs. 11–15) such as mean relative error (MRE),  R2, mean-
square error (MSE), the standard deviation (STD), root-mean-square error (RMSE) were used to assess the 
model accuracy.

(11)R2
= 1−

∑n
i=1

[

x
predicted
i − x

experimental
i

]2

∑n
i=1

[

x
predicted
i − xm

]2

(12)STD =

√

√

√

√

√

n
∑

i=1

(

x
predicted
i − xm

)2

n

Figure 3.  The {100}-terminated alloy surfaces in the form of (a) B@A, (b) AB@A, and (c) A3B@A. The first 
rows indicate the top view, and the second rows show the side view of the  structures42.
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where n is the number of datapoints and m refers to mean value.

Model development procedure. As mentioned above, there are 13 input variables to predict target 
parameter. In this study, 5 clusters with Gaussian membership functions were used for construction of ANFIS 
model. Gaussian function comprises of 2 paremeter that should be optimally determined during model develop-
ment. Since there are 5 clusters and 13 inputs, there are 140 membership function parameters for optimization 
purpose. The optimum values of membership function parameters were determined by two evolutionary algo-
rithms named PSO and GA. Setting of evolutionary algorithms was summarized in Table 1.

Accuracy of the collected data. Some suspected data or outliers in the data bank show inconsistent 
behavior with the rest of the data. They are probably generated because of the degree of the accuracy of the calcu-
lation and assumptions (or instrumental and human errors in the case of experimental data banks). It is vital to 
distinguish them because they can cause the wrong prediction for the developed  model34,36. To search the suspi-
cious data and elevate the quality of data bank, the Leverage method is applied through which two parameters of 
critical leverage limit (H*) and Hat matrix (H) are calculated as follows:

where i, j, and U are the number of the model parameters, the number of training data, and a matrix dimensional 
of i * j, respectively. William’s plot, the standardized residuals versus Hat values, is depicted in Fig. 4. In this plot, 
the reliable zone is defined as the region bounded between the standardized residuals of − 3 to 3 and the critical 
leverage limit. According to Fig. 4, it can be clearly seen that most of the *CO binding energy values are placed 
in the valid area other than only 10 points among 258 data points, demonstrating the dataset is outstanding for 
training and testing models of ANFIS–PSO and ANFIS–GA.

Results and discussion
Analysis of sensitivity. Analysis of sensitivity is usually performed to study how the input parameters 
affect the output  quantity35. In this analysis, relevancy factor (r) indicates the most influential input parameter 
on *CO binding energy, which is calculated as:
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1

n

n
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√
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Table 1.  Detail information of optimized ANFIS models.

ANFIS–PSO ANFIS–GA

No. of inputs 258 No. of inputs 258

No. of output 1 No. of output 1

Membership function Gaussian Membership function Gaussian

No. of cluster 5 No. of cluster 5

No. of tuneing variables 140 No. of tuneing variables 140

Population size 45 Population size 45

Iteration 1500 Iteration 1500

C1 1

C2 2
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where Xk.i , Xk , Yi , Y  , and n indicate the ‘k’ th input parameter, the average of the input parameters, ‘i’ th output, 
the outputs average, and the number of all data points, respectively. Generally, r value changes between − 1 to + 1. 
The more absolute value of r shows the greater effect of the corresponding input on the output for each input. The 
negative and positive values denote that the high input the less and more in the output, respectively 57. According 
to Fig. 5, the *CO binding energy (consequently the reactivity of the metal surface) has direct relationship with 
the filling of the d-band, skewness of the d-band, Kurtosis of a d-band, atomic radius, spatial extent of d-orbitals, 
electron affinity, and Pauling electronegativity and has an inverse relationship with the center of the d-band, 
width of a d-band, work function, ionization potential, square of adsorbate–metal interatomic d coupling matrix 
element, and local Pauling electronegativity.

As expected from the d-band theory, the sensitivity analysis declared the filling and the center of the d-band 
are the most effective parameters by 0.86 and − 0.85 relevancy factor, respectively. Also, the higher moments of 
the d-states distribution (such as skewness with r value of 0.78), which represent the d-band shape play a rela-
tively important role in determining the reactivity of the metal surface. On the other hand, both of the electron 
affinity and the Pauling electronegativity have minimum effect on the *CO binding energy with r value of 0.01.

It is worth mention that parameters such as electron affinity and the Pauling electronegativity are intrinsic 
properties of active metal atoms which alter slightly across the periodic table but the most influencing parameters 
such as d-band center can be adjusted by ligand and strain  engineering42.

Modeling results. To evaluate how precisely the suggested ANFIS–GA and ANFIS–PSO models are, the 
statistical factors are applied to determine the accordance between the data points and the anticipated values 
of the *CO binding energy, reported in Table 2. The ANFIS–GA and ANFIS–PSO models predicted the train 
data significantly excellent with  R2 of 0.994 and 0.995, respectively. The relative error quantities demonstrate 
the high precision of the proposed models in data training; in particular, the RMSE values of 0.0383 and 0.0411 
for ANFIS–GA and ANFIS–PSO, respectively, are lower than the previous reports (0.1342, 0.1243, and 0.0544). 
This indicates the strength of the proposed models, which used the d-band theory electronic properties and the 
intrinsic features as inputs, the same data trained  in42 with RMSE of 0.13. In addition to the forecast precision of 
the training data, the capability of the developed models to predict the unseen *CO binding energy data points is 
critically important. Therefore, both of the established models were investigated for the testing data. Again, both 
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Figure 4.  Detection of suspicious data for (a) PSO–ANFIS, (b) GA–ANFIS.
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of the ANFIS–GA and ANFIS–PSO models show close and great accuracy for prediction of the unseen *CO 
binding energy data, where MRE,  R2, MSE, STD, RMSE and are 3.521%/6.520%, 0.993/0.993, 0.00180/0.00177, 
0.0322/0.0295, 0.0425/0.0421and for ANFIS–PSO and ANFIS–GA algorithms, respectively.

For further confirmation the accuracy of the models, the data points and the anticipated values of the *CO 
binding energy are depicted by data indices in Fig. 6. As can be observed, the excellent agreement between the 
actual and estimated *CO binding energy amounts proves the excellent function of the established models. For 
both the ANFIS–GA and ANFIS–PSO models, the predicted values lines follow the actual data points precisely, 
which means these models have incredible capability to assess the reactivity of the metal alloy surfaces in terms 
of *CO adsorption energy.

The forecasted *CO binding energy values versus actual data values are depicted in Fig. 7. For both of the 
proposed ANFIS–GA and ANFIS–PSO models, the predicted data are precisely placed on their actual values so 
that their linear fitting shows correlation coefficients of more than 0.99. The 45° line is a criterion for the accuracy 
of the suggested models, where as shown in Fig. 7, the drawn fitting lines cross it precisely.

Moreover, the percentage of relative deviations between actual and estimated *CO binding energy data is 
shown in Fig. 8 for testing and training data sets of the developed ANFIS–GA and ANFIS–PSO models. The 
percentage mean relative deviations of the training and testing data obtained by the PSO–ANFIS model are 
5.621% and 3.521%, respectively. Also, these values were 5.534% and 6.520% for training and testing datasets of 
ANFIS–GA model, respectively.

Figure 5.  Analysis of sensitivity of the input parameters for *CO adsorption energy on the alloy surfaces.

Table 2.  The statistical parameters of proposed ANFIS-GA and ANFIS-PSO models.

Model Set R2 MRE (%) MSE RMSE STD

ANFIS–PSO

Train 0.994 5.621 0.001688655 0.0411 0.0283

Test 0.993 3.521 0.001807063 0.0425 0.0322

Total 0.994 5.099 0.001718058 0.0425 0.0293

ANFIS–GA

Train 0.995 5.534 0.001467699 0.0383 0.0268

Test 0.993 6.520 0.001770905 0.0421 0.0295

Total 0.994 5.779 0.001542992 0.0421 0.0275
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Conclusions
The present study conveniently indicates the potential and value of machine learning in directing the experi-
mental efforts in alloy system electrocatalysts for CO2 reduction. Accordingly, two machine learning models of 
ANFIS–PSO and ANFIS–GA have been presented to anticipate the *CO binding energy on alloys electrocata-
lysts using electronic and intrinsic features. The required properties as input parameters were obtained through 
geometry optimization in DFT calculations.

The ANFIS–PSO and ANFIS–GA presented an excellent match between the *CO binding data and the 
predicted values with RMSE of 0.0411 and 0.0383, respectively, which is more precise than the other reported 
studies. In addition, it was found that the relative deviation of ANFIS-PSO model was 3.521%, while this value 
was 6.520% for the ANFIS–GA model, which indicates better ability of PSO to optimize ANFIS model. The 
percentage mean relative deviations of the training and testing data obtained by the PSO–ANFIS model are 
5.621% and 3.521%, respectively. Also, these values were 5.534% and 6.520% for training and testing datasets of 
ANFIS–GA model, respectively. Moreover, the outlier detection technique was used to find outliers and it was 
shown by William’s diagram. The sensitivity analysis confirmed the filling and the center of the d-band as the 
most influencing parameters for the electrocatalyst surface reactivity by 0.86 and − 0.85 relevancy factor, respec-
tively. This study’s results and discussions can make it easier for scientists and chemical engineers to explore and 
examine new materials as electrocatalysts for the  CO2 electroreduction process.
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Figure 6.  Comparison of actual and estimated values for (a) ANFIS–PSO, (b) ANFIS–GA.
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Figure 7.  Cross plots for (a) ANFIS–PSO, (b) ANFIS–GA.
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Figure 8.  Comparison of experimental values and model outputs for (a) ANFIS–PSO, (b) ANFIS–GA.
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All data generated or analysed during this study are included in this published article [and its supplementary 
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