7,949 research outputs found

    An investigation of temperature distribution in cooled guide vanes

    Get PDF
    A numerical study to determine the temperature distribution in the guide vane blades of a radial inflow turbine is presented. A computer program was developed which permits the temperature distribution to be calculated when the blade is cooled internally using a combination of impingement and film cooling techniques. The study is based on the use of the finite difference method in a two dimensional heat conduction problem. The results are then compared to determine the best cooling configuration for a certain coolant to primary mass flow ratio

    Distributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient

    Full text link
    We consider a set up where a file of size M is stored in n distributed storage nodes, using an (n,k) minimum storage regenerating (MSR) code, i.e., a maximum distance separable (MDS) code that also allows efficient exact-repair of any failed node. The problem of interest in this paper is to minimize the repair bandwidth B for exact regeneration of a single failed node, i.e., the minimum data to be downloaded by a new node to replace the failed node by its exact replica. Previous work has shown that a bandwidth of B=[M(n-1)]/[k(n-k)] is necessary and sufficient for functional (not exact) regeneration. It has also been shown that if k < = max(n/2, 3), then there is no extra cost of exact regeneration over functional regeneration. The practically relevant setting of low-redundancy, i.e., k/n>1/2 remains open for k>3 and it has been shown that there is an extra bandwidth cost for exact repair over functional repair in this case. In this work, we adopt into the distributed storage context an asymptotically optimal interference alignment scheme previously proposed by Cadambe and Jafar for large wireless interference networks. With this scheme we solve the problem of repair bandwidth minimization for (n,k) exact-MSR codes for all (n,k) values including the previously open case of k > \max(n/2,3). Our main result is that, for any (n,k), and sufficiently large file sizes, there is no extra cost of exact regeneration over functional regeneration in terms of the repair bandwidth per bit of regenerated data. More precisely, we show that in the limit as M approaches infinity, the ratio B/M = (n-1)/(k(n-k))$

    Constructing Gravitational Dimensions

    Full text link
    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg which does not break down until the scale Lambda_2=(mg Mpl)^(1/2), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Lambda_3 = (mg^2 Mpl)^(1/3). Next, we look at how the discretization prescribed by the truncation of the KK tower of an honest extra diemsinon rasies the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit. A number of canditate symmetries associated with locality in the discretized dimension are also discussed.Comment: 21 pages, 6 diagrams, 1 figur

    Supersymmetry-Breaking Loops from Analytic Continuation into Superspace

    Get PDF
    We extend to all orders in perturbation theory a method to calculate supersymmetry-breaking effects by analytic continuation of the renormalization group into superspace. A central observation is that the renormalized gauge coupling can be extended to a real vector superfield, thereby including soft breaking effects in the gauge sector. We explain the relation between this vector superfield coupling and the "holomorphic" gauge coupling, which is a chiral superfield running only at 1 loop. We consider these issues for a number of regulators, including dimensional reduction. With this method, the renormalization group equations for soft supersymmetry breaking terms are directly related to supersymmetric beta functions and anomalous dimensions to all orders in perturbation theory. However, the real power of the formalism lies in computing finite soft breaking effects corresponding to high-loop component calculations. We prove that the gaugino mass in gauge-mediated supersymmetry breaking is ``screened'' from strong interactions in the messenger sector. We present the complete next-to-leading calculation of gaugino masses (2 loops) and sfermion masses (3 loops) in minimal gauge mediation, and several other calculations of phenomenological relevance.Comment: 50 pages, 1 ps and 1 eps figure, LaTe

    Gravity of higher-dimensional global defects

    Full text link
    Solutions of Einstein's equations are found for global defects in a higher-dimensional spacetime with a nonzero cosmological constant Lambda. The defect has a (p-1)-dimensional core (brane) and a `hedgehog' scalar field configuration in the n extra dimensions. For Lambda = 0 and n > 2, the solutions are characterized by a flat brane worldsheet and a solid angle deficit in the extra dimensions. For Lambda > 0, one class of solutions describes spherical branes in an inflating higher-dimensional universe. Instantons obtained by a Euclidean continuation of such solutions describe quantum nucleation of the entire inflating brane-world, or of a spherical brane in an inflating higher-dimensional universe. For Lambda < 0, one class of solutions exhibits an exponential warp factor. It is similar to spacetimes previously discussed by Randall and Sundrum for n = 1 and by Gregory for n = 2.Comment: 18 pages, no figures, uses revte

    Flavor at the TeV Scale with Extra Dimensions

    Full text link
    Theories where the Standard Model fields reside on a 3-brane, with a low fundamental cut-off and extra dimensions, provide alternative solutions to the gauge hierarchy problem. However, generating flavor at the TeV scale while avoiding flavor-changing difficulties appears prohibitively difficult at first sight. We argue to the contrary that this picture allows us to lower flavor physics close to the TeV scale. Small Yukawa couplings are generated by ``shining'' badly broken flavor symmetries from distant branes, and flavor and CP-violating processes are adequately suppressed by these symmetries. We further show how the extra dimensions avoid four dimensional disasters associated with light fields charged under flavor. We construct elegant and realistic theories of flavor based on the maximal U(3)^5 flavor symmetry which naturally generate the simultaneous hierarchy of masses and mixing angles. Finally, we introduce a new framework for predictive theories of flavor, where our 3-brane is embedded within highly symmetrical configurations of higher-dimensional branes.Comment: 40 pages, 8 figure

    Quantum Key Distribution over Probabilistic Quantum Repeaters

    Full text link
    A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal excitation probability at which the QKD rate peaks. Such an optimum probability, in most regimes of interest, is insensitive to the total distance.Comment: 12 pages, 6 figures; Fig. 5(a) is replace

    Causality, Analyticity and an IR Obstruction to UV Completion

    Get PDF
    We argue that certain apparently consistent low-energy effective field theories described by local, Lorentz-invariant Lagrangians, secretly exhibit macroscopic non-locality and cannot be embedded in any UV theory whose S-matrix satisfies canonical analyticity constraints. The obstruction involves the signs of a set of leading irrelevant operators, which must be strictly positive to ensure UV analyticity. An IR manifestation of this restriction is that the "wrong" signs lead to superluminal fluctuations around non-trivial backgrounds, making it impossible to define local, causal evolution, and implying a surprising IR breakdown of the effective theory. Such effective theories can not arise in quantum field theories or weakly coupled string theories, whose S-matrices satisfy the usual analyticity properties. This conclusion applies to the DGP brane-world model modifying gravity in the IR, giving a simple explanation for the difficulty of embedding this model into controlled stringy backgrounds, and to models of electroweak symmetry breaking that predict negative anomalous quartic couplings for the W and Z. Conversely, any experimental support for the DGP model, or measured negative signs for anomalous quartic gauge boson couplings at future accelerators, would constitute direct evidence for the existence of superluminality and macroscopic non-locality unlike anything previously seen in physics, and almost incidentally falsify both local quantum field theory and perturbative string theory.Comment: 34 pages, 10 figures; v2: analyticity arguments improved, discussion on non-commutative theories and minor clarifications adde

    The correction of the littlest Higgs model to the Higgs production process eâˆ’Îłâ†’ÎœeW−He^{-}\gamma\to \nu_{e}W^{-}H in e−γe^{-}\gamma collisions

    Full text link
    The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs(LH) model, we study the process eâˆ’Îłâ†’ÎœeW−He^{-}\gamma\to \nu_{e}W^{-}H and calculate the contributions of the LH model to the cross section of this process. The results show that, in most of parameter spaces preferred by the electroweak precision data, the value of the relative correction is larger than 10%. Such correction to the process eâˆ’Îłâ†’ÎœeW−He^{-}\gamma\to \nu_{e}W^{-}H is large enough to be detected via e−γe^{-}\gamma collisions in the future high energy linear e+e−e^{+}e^{-} collider(LCLC) experiment with the c.m energy s\sqrt{s}=500 GeV and a yearly integrated luminosity ÂŁ=100fb−1\pounds=100fb^{-1}, which will give an ideal way to test the model.Comment: 13 pages, 4 figure

    Local Spacetime Physics from the Grassmannian

    Full text link
    A duality has recently been conjectured between all leading singularities of n-particle N^(k-2)MHV scattering amplitudes in N=4 SYM and the residues of a contour integral with a natural measure over the Grassmannian G(k,n). In this note we show that a simple contour deformation converts the sum of Grassmannian residues associated with the BCFW expansion of NMHV tree amplitudes to the CSW expansion of the same amplitude. We propose that for general k the same deformation yields the (k-2) parameter Risager expansion. We establish this equivalence for all MHV-bar amplitudes and show that the Risager degrees of freedom are non-trivially determined by the GL(k-2) "gauge" degrees of freedom in the Grassmannian. The Risager expansion is known to recursively construct the CSW expansion for all tree amplitudes, and given that the CSW expansion follows directly from the (super) Yang-Mills Lagrangian in light-cone gauge, this contour deformation allows us to directly see the emergence of local space-time physics from the Grassmannian.Comment: 22 pages, 13 figures; v2: minor updates, typos correcte
    • 

    corecore