14 research outputs found

    Potential for Transcranial Laser or LED Therapy to Treat Stroke, Traumatic Brain Injury, and Neurodegenerative Disease

    No full text
    Near-infrared (NIR) light passes readily through the scalp and skull and a small percentage of incident power density can arrive at the cortical surface in humans.1 The primary photoreceptors for red and NIR light are mitochondria, and cortical neurons are exceptionally rich in mitochondria. It is likely that brain cells are ideally set up to respond to light therapy. The basic biochemical pathways activated by NIR light, e.g., increased adenosine-5’-triphosphate (ATP) production, and signaling pathways activated by reactive oxygen species, nitric oxide release, and increased cyclic adenosine monophosphate (AMP) all work together to produce beneficial effects in brains whose function has been compromised by ischemia, traumatic injury, or neurodegeneration. One of the main mechanisms of action of transcranial light therapy (TLT) is to prevent neurons from dying, when they have been subjected to some sort of hypoxic, traumatic, or toxic insult. This is probably because of light-mediated upregulation of cytoprotective gene products such as antioxidant enzymes, heat shock proteins, and anti-apoptotic proteins. Light therapy in vitro has been shown to protect neurons from death caused by methanol,2 cyanide or tetrodotoxin, 3 and amyloid beta peptide.4 There is also probably a second mechanism operating in TLT; increased neurogenesis. Neurogenesis is the generation of neuronal precursors and birth of new neural cells.5 Two key sites for adult neurogenesis include the subventricular zone (SVZ) of the lateral ventricles, and the subgranular layer (SGL) of the dentate gyrus in the hippocampus.6 Neurogenesis can be stimulated by physiological factors, such as growth factors and environmental enrichment, and by pathological processes, including ischemia and neurodegeneration.7 Adult neurogenesis (in the hippocampus particularly) is now recognized as a major determinant of brain function both in experimental animals and in humans. Neural progenitor cells in their niche in the SGL of the dentate gyrus give birth to newly formed neurons that are thought to play a role in brain function, particularly in olfaction and in hippocampal-dependent learning and memory. In small animal models neurogenesis can be readily detected by incorporation of bromodeoxyuridine (BrdU), injected before euthanasia, into proliferating brain cells. Increased neurogenesis after TLT, has been demonstrated in a rat model of stroke,9 and in the Hamblin laboratory after TLT for acute traumatic brain injury (TBI) in mice (W. Xuan, T. Ando, et al., unpublished data). These two mechanisms of action of TLT in ameliorating brain damage (prevention of neuronal death and increased neurogenesis) have motivated studies in both animals and humans for diverse brain disorders and diseases. TLT for acute stroke is the most developed,10 but acute TBI has also been shown to benefit from TLT.11 These areas are reviewed further.United States. Dept. of Veterans Affairs. Medical Research ServiceNational Institutes of Health (U.S.) (Grant R01AI50875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs ( Program in TBI W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (F9950-04-1-0079

    Integração lavoura e pecuária e os atributos físicos de solo manejado sob sistema plantio direto Livestock-crop integration effects on physical attributes of a soil under no-till

    No full text
    Atributos físicos de solo foram avaliados num Latossolo Vermelho distrófico típico, em Passo Fundo, RS, dez anos após o estabelecimento (1993 a 2003) de cinco sistemas de produção integrando culturas produtoras de grãos, pastagens de inverno e forrageiras perenes: I) trigo/soja, aveia-branca/soja e ervilhaca/milho; II) trigo/soja, aveia-branca/soja e forrageiras anuais - aveia-preta + ervilhaca/milho; III) forrageiras perenes da estação fria - festuca + trevo-branco + trevo-vermelho + cornichão; IV) forrageiras perenes da estação quente - pensacola + aveia-preta + azevém + trevo-branco + trevo-vermelho + cornichão; e V) alfafa para feno, acrescentada em 1994, como tratamento adicional, com repetições em áreas contíguas ao experimento. Metade das áreas sob os sistemas III, IV e V retornou ao sistema I a partir do verão de 1996. As culturas, tanto de inverno como de verão, foram estabelecidas sob plantio direto. Os tratamentos foram distribuídos em blocos ao acaso com quatro repetições. Amostras de solo também foram coletadas em fragmento de floresta subtropical ao lado do experimento. O aumento da densidade do solo e da microporosidade, e a redução da porosidade total e da macroporosidade, devido aos distintos sistemas de produção de grãos com pastagens, não atingiram níveis capazes de promover degradação do solo. Os sistemas com pastagens perenes apresentaram menor densidade do solo e maior porosidade total e macroporosidade na camada 0-2 cm, em relação aos sistemas de produção de grãos ou produção de grãos com pastagens anuais.<br>Soil physical characteristics were evaluated of a typical dystrophic Red Latosol (Typic Haplorthox) located in Passo Fundo, State of Rio Grande do Sul, Brazil, after ten years (1993 to 2003) under mixed production systems. The effects of production systems integrating grain production with winter annual and perennial forages under no-tillage were assessed. Five mixed cropping systems were evaluated: I) wheat/soybean, white oat/soybean, and common vetch/corn; II) wheat/soybean, white oat/soybean, and annual forages (black oat + common vetch)/corn; III) perennial cool season forages (fescue + white clover + red clover + birdsfoot trefoil); and IV) perennial warm season forages (bahiagrass + black oat + rye grass + white clover + red clover + birdsfoot trefoil). System V) alfalfa as hay crop was established in an adjacent area in 1994. Half of the areas under the systems III, IV, and V returned to system I after the summer of 1996 (southern hemisphere). The crops, both summer and winter, were grown under no-till. The treatments were arranged in a randomized complete block design, with four replications. Soil core samples were also collected in a subtropical forest fragment adjacent to the experimental area. The variations in soil bulk density, total porosity, microporosity and macroporosity due to grain production systems with forages were not severe enough to cause soil degradation. The soil bulk density in the production systems with perennial forages was lower and total porosity and macroporosity, in the 0-2 cm layer, higher than in the production systems of grain or of grain with annual forages
    corecore