211 research outputs found

    Invariant Correlations in Simplicial Gravity

    Full text link
    Some first results are presented regarding the behavior of invariant correlations in simplicial gravity, with an action containing both a bare cosmological term and a lattice higher derivative term. The determination of invariant correlations as a function of geodesic distance by numerical methods is a difficult task, since the geodesic distance between any two points is a function of the fluctuating background geometry, and correlation effects become rather small for large distances. Still, a strikingly different behavior is found for the volume and curvature correlation functions. While the first one is found to be negative definite at large geodesic distances, the second one is always positive for large distances. For both correlations the results are consistent in the smooth phase with an exponential decay, turning into a power law close to the critical point at GcG_c. Such a behavior is not completely unexpected, if the model is to reproduce the classical Einstein theory at distances much larger than the ultraviolet cutoff scale.Comment: 27 pages, conforms to published versio

    SU(2) potentials in quantum gravity

    Full text link
    We present investigations of the potential between static charges from a simulation of quantum gravity coupled to an SU(2) gauge field on 63×46^{3}\times 4 and 83×48^{3}\times 4 simplicial lattices. In the well-defined phase of the gravity sector where geometrical expectation values are stable, we study the correlations of Polyakov loops and extract the corresponding potentials between a source and sink separated by a distance RR. In the confined phase, the potential has a linear form while in the deconfined phase, a screened Coulombic behavior is found. Our results indicate that quantum gravitational effects do not destroy confinement due to non-abelian gauge fields.Comment: 3 pages, contribution to Lattice 94 conference, uuencoded compressed postscript fil

    The Well-Defined Phase of Simplicial Quantum Gravity in Four Dimensions

    Full text link
    We analyze simplicial quantum gravity in four dimensions using the Regge approach. The existence of an entropy dominated phase with small negative curvature is investigated in detail. It turns out that observables of the system possess finite expectation values although the Einstein-Hilbert action is unbounded. This well-defined phase is found to be stable for a one-parameter family of measures. A preliminary study indicates that the influence of the lattice size on the average curvature is small. We compare our results with those obtained by dynamical triangulation and find qualitative correspondence.Comment: 29 pages, uuencoded postscript file; to appear in Phys. Rev.

    Phase diagram of Regge quantum gravity coupled to SU(2) gauge theory

    Get PDF
    We analyze Regge quantum gravity coupled to SU(2) gauge theory on 43×24^3\times 2, 63×46^{3}\times 4 and 83×48^{3}\times 4 simplicial lattices. It turns out that the window of the well-defined phase of the gravity sector where geometrical expectation values are stable extends to negative gravitational couplings as well as to gauge couplings across the deconfinement phase transition. We study the string tension from Polyakov loops, compare with the β\beta-function of pure gauge theory and conclude that a physical limit through scaling is possible.Comment: RevTeX, 14 pages, 5 figures (2 eps, 3 tex), 2 table

    Influence of the Measure on Simplicial Quantum Gravity in Four Dimensions

    Full text link
    We investigate the influence of the measure in the path integral for Euclidean quantum gravity in four dimensions within the Regge calculus. The action is bounded without additional terms by fixing the average lattice spacing. We set the length scale by a parameter β\beta and consider a scale invariant and a uniform measure. In the low β\beta region we observe a phase with negative curvature and a homogeneous distribution of the link lengths independent of the measure. The large β\beta region is characterized by inhomogeneous link lengths distributions with spikes and positive curvature depending on the measure.Comment: 12pg

    Z_2-Regge versus Standard Regge Calculus in two dimensions

    Get PDF
    We consider two versions of quantum Regge calculus. The Standard Regge Calculus where the quadratic link lengths of the simplicial manifold vary continuously and the Z_2-Regge Model where they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible Z_2 model still retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observables such as average curvature or Liouville field susceptibility, we use in both models the same functional integration measure, which is chosen to render the Z_2-Regge Model particularly simple. Expectation values are computed numerically and agree qualitatively for positive bare couplings. The phase transition within the Z_2-Regge Model is analyzed by mean-field theory.Comment: 21 pages, 16 ps-figures, to be published in Phys. Rev.

    Fluctuating geometries, q-observables, and infrared growth in inflationary spacetimes

    Full text link
    Infrared growth of geometrical fluctuations in inflationary spacetimes is investigated. The problem of gauge-invariant characterization of growth of perturbations, which is of interest also in other spacetimes such as black holes, is addressed by studying evolution of the lengths of curves in the geometry. These may either connect freely falling "satellites," or wrap non-trivial cycles of geometries like the torus, and are also used in diffeomorphism- invariant constructions of two-point functions of field operators. For spacelike separations significantly exceeding the Hubble scale, no spacetime geodesic connects two events, but one may find geodesics constrained to lie within constant-time spatial slices. In inflationary geometries, metric perturbations produce significant and growing corrections to the lengths of such geodesics, as we show in both quantization on an inflating torus and in standard slow-roll inflation. These become large, signaling breakdown of a perturbative description of the geometry via such observables, and consistent with perturbative instability of de Sitter space. In particular, we show that the geodesic distance on constant time slices during inflation becomes non-perturbative a few e-folds after a given scale has left the horizon, by distances \sim 1/H^3 \sim RS, obstructing use of such geodesics in constructing IR-safe observables based on the spatial geometry. We briefly discuss other possible measures of such geometrical fluctuations.Comment: 33 pages, 2 figures, latex; v2: typos corrected, references improve

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    The Color--Flavor Transformation of induced QCD

    Full text link
    The Zirnbauer's color-flavor transformation is applied to the U(Nc)U(N_c) lattice gauge model, in which the gauge theory is induced by a heavy chiral scalar field sitting on lattice sites. The flavor degrees of freedom can encompass several `generations' of the auxiliary field, and for each generation, remaining indices are associated with the elementary plaquettes touching the lattice site. The effective, color-flavor transformed theory is expressed in terms of gauge singlet matrix fields carried by lattice links. The effective action is analyzed for a hypercubic lattice in arbitrary dimension. We investigate the corresponding d=2 and d=3 dual lattices. The saddle points equations of the model in the large-NcN_c limit are discussed.Comment: 24 pages, 6 figures, to appear in Int. J. Mod. Phys.

    Non-Perturbative Gravity and the Spin of the Lattice Graviton

    Full text link
    The lattice formulation of quantum gravity provides a natural framework in which non-perturbative properties of the ground state can be studied in detail. In this paper we investigate how the lattice results relate to the continuum semiclassical expansion about smooth manifolds. As an example we give an explicit form for the lattice ground state wave functional for semiclassical geometries. We then do a detailed comparison between the more recent predictions from the lattice regularized theory, and results obtained in the continuum for the non-trivial ultraviolet fixed point of quantum gravity found using weak field and non-perturbative methods. In particular we focus on the derivative of the beta function at the fixed point and the related universal critical exponent ν\nu for gravitation. Based on recently available lattice and continuum results we assess the evidence for the presence of a massless spin two particle in the continuum limit of the strongly coupled lattice theory. Finally we compare the lattice prediction for the vacuum-polarization induced weak scale dependence of the gravitational coupling with recent calculations in the continuum, finding similar effects.Comment: 46 pages, one figur
    corecore