4,957 research outputs found

    Possible ability of bovine follicular fluid to attract migrating bull spermatozoa

    Get PDF
    AimTo examine the potential of bovine follicular fluid (BFF) to attract bull spermatozoa. MethodsThe ability of the BFF to attract bull sperm was evaluated by observing changes in sperm migration after being placed in a cross-column chamber. The movement parameters of the heads and flagella of the sperm that were attracted to the BFF were analyzed by using the Computer Assisted Sperm Analysis system. ResultsIt was observed that 61.6% of the bull sperm migrated toward the BFF when the BFF was used at a concentration of 0.1%, but 67.2% of the sperm did not migrate toward the BFF at a concentration of 10%. Relatively larger numbers of both precapacitated and postcapacitated bull sperm migrated toward the BFF (0.1%). The ability of the 0.1% BFF to attract sperm probably affected both the normal artificial insemination (AI) fertility sperm and the poor AI fertility spermatozoa. The flagellar curvilinear ratio of the sperm winding to the 0.1% BFF was significantly higher than that of the prewinding sperm. ConclusionThese results could suggest that BFF potentially attracts bull sperm at a certain concentration, irrespective of the capacitation status of the sperm. Although the mechanism by which this attraction occurs remains unclear, these data imply that it could be related to BFF-dependent changes in the sperm flagellar curvilinear ratio.ArticleREPRODUCTIVE MEDICINE AND BIOLOGY.16(2):133-138(2017)journal articl

    Multi-Modes Phonon Softening in Two-Dimensional Electron-Lattice System

    Full text link
    Phonon dispersion in a two-dimensional electron-lattice system described by a two-dimensional square-lattice version of Su-Schrieffer-Heeger's model and having the half-filled electronic band is studied theoretically at temperatures higher than the mean field critical temperature of the Peierls transition. When the temperature is lowered from the higher region down to the critical one, softening of multi phonon modes which have wave vectors equal to the nesting vector \vv{Q}=(\pi/a,\pi/a) with aa the lattice constant or parallel to \vv{Q} is observed. Although both of the transverse and longitudinal modes are softened at the critical temperature in the case of the wave vector equal to \vv{Q}, only the transverse modes are softened for other wave vectors parallel to \vv{Q}. This behavior is consistent with the Peierls distortions at lower temperatures.Comment: 10 pages, 5 Figure

    Effect of Shear Flow on the Stability of Domains in Two Dimensional Phase-Separating Binary Fluids

    Full text link
    We perform a linear stability analysis of extended domains in phase-separating fluids of equal viscosity, in two dimensions. Using the coupled Cahn-Hilliard and Stokes equations, we derive analytically the stability eigenvalues for long wavelength fluctuations. In the quiescent state we find an unstable varicose mode which corresponds to an instability towards coarsening. This mode is stabilized when an external shear flow is imposed on the fluid. The effect of the shear is seen to be qualitatively similar to that found in experiments.Comment: 13 pages, RevTeX, 8 eps figures included. Submitted to Phys. Rev.

    Universal mechanism of discontinuity of commensurate-incommensurate transitions in three-dimensional solids: Strain dependence of soliton self-energy

    Full text link
    We show that there exists a universal mechanism of long-range soliton attraction in three-dimensional solids and, therefore, of discontinuity of any commensurate-incommensurate (C-IC) phase transition. This mechanism is due to the strain dependence of the soliton self-energy and specific features of the solid-state elasticity. The role of this mechanism is studied in detail for a class of C-IC transitions where the IC modulation is one-dimensional, the anisotropy in the order parameter space is small, and the symmetry of the systems allows the existence of the Lifshitz invariant. Two other mechanisms of soliton attraction are operative here but the universal mechanism considered in this paper is found to be the most important one in some cases. Comparison with the most extensively studied C-IC transition in K2SeO4\rm K_2SeO_4 shows that the experimentally observed thermal anomalies can be understood as a result of the smearing of the theoretically predicted discontinuous transition.Comment: 8 pages (extended version, title changed

    High prevalence of hypothyroidism in patients with autoimmune pancreatitis

    Get PDF
    ArticleDIGESTIVE DISEASES AND SCIENCES. 50(6): 1052-1057 (2005)journal articl

    Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

    Get PDF
    The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system

    Synchronized pulse control of decoherence

    Full text link
    We present a new strategy for multipulse control over decoherence. When a two-level system interacts with a reservoir characterized by a specific frequency, we find that the decoherence is effectively suppressed by synchronizing the pulse-train application with the dynamical motion of the reservoir.Comment: 14 pages, 8 figure

    Formation of air-gap structure at a GaN epilayer/substrate interface by using an InN interlayer

    Get PDF
    We propose a new technique for “air‐gap” formation at a GaN/sapphire interface by using an InN interlayer. This is aimed to grow epitaxial GaN films with reduced stress and cracks. First, an InN interlayer of about 0.2 μm thick is grown at 600 °C in atmospheric pressure. Then a 30 nm‐thick GaN buffer layer is grown on the InN layer at 550 °C. The substrate temperature is ramped up to 1000 °C in the NH3 flow, and finally a 1.5 μm‐thick GaN epilayer is grown on the annealed GaN buffer layer using nitrogen carrier gas. Consequently, an “air‐gap” structure is naturally formed close to the substrate surface. During the ramping period of substrate temperature, the InN layer decomposes due to its thermal instability and metallic In is formed. It is found that metallic In drops as a result of InN decomposition contribute to the air‐gap formation. No cracks are found on the GaN surface and a reduced stress in the layer is confirmed by PL and Raman shift measurements

    Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source

    Get PDF
    We developed a method for mapping the carrier density on a semiconductor substrate surface based on terahertz (THz)-reflective measurement. Reflectivity in the THz-frequency region away from the optical phonon frequency is sensitive to the carrier density in semiconductors. However, reflectivity in the optical phonon frequency regions is around 1.0, independent of the carrier density. We developed a THz-reflective spectral imaging system using a frequency-agile, ultra-widely tunable THz source (1 - 40 \THz). Different reflective images were obtained from GaN samples of carrier density 2.5x10^{16}cm^{-3}, 1.0x10^{18}cm^{-3}, and 1.5x10^{18}cm^{-3} using 22.7 and 26.5 THz. The image contrast reflected the GaN crystals' carrier density
    corecore