6 research outputs found

    Local Renewable Energy Initiatives in Germany and Japan in a Changing National Policy Environment

    Get PDF
    Our article explores the contribution of local initiatives to the creation of path dependencies for energy transition in Germany and Japan in the face of resistance from entrenched incumbents at the national level. We use a process-tracing methodology based partly on interviews with local participants. In particular, we explore the role of local initiatives in securing socio-political space for the expansion of renewable energy (RE) and in embedding themselves in ecosystems of public and private institutions. German energy activists were more successful than their Japanese counterparts in expanding this space and creating positive feedback in part because they were able to build horizontal networks that anchored the energy transition firmly in local communities. Although problems with grid technology have led to retrenchment in both cases, Japanese activists\u27 reliance on vertical networks has limited their ability to weather a backlash from national government and utility actors. Our study demonstrates the interaction of political, economic/technological, and legitimation paths to energy transition and highlights the importance of the latter two

    Local Renewable Energy Initiatives in Germany and Japan in a Changing National Policy Environment

    Get PDF
    Our article explores the contribution of local initiatives to the creation of path dependencies for energy transition in Germany and Japan in the face of resistance from entrenched incumbents at the national level. We use a process-tracing methodology based partly on interviews with local participants. In particular, we explore the role of local initiatives in securing socio-political space for the expansion of renewable energy (RE) and in embedding themselves in ecosystems of public and private institutions. German energy activists were more successful than their Japanese counterparts in expanding this space and creating positive feedback in part because they were able to build horizontal networks that anchored the energy transition firmly in local communities. Although problems with grid technology have led to retrenchment in both cases, Japanese activists\u27 reliance on vertical networks has limited their ability to weather a backlash from national government and utility actors. Our study demonstrates the interaction of political, economic/technological, and legitimation paths to energy transition and highlights the importance of the latter two

    Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional deficits

    Get PDF
    Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3

    Hemimethylation of CpG dyads is characteristic of secondary DMRs associated with imprinted loci and correlates with 5-hydroxymethylcytosine at paternally methylated sequences

    No full text
    Background In mammals, the regulation of imprinted genes is controlled by differential methylation at imprinting control regions which acquire parent of origin-specific methylation patterns during gametogenesis and retain differences in allelic methylation status throughout fertilization and subsequent somatic cell divisions. In addition, many imprinted genes acquire differential methylation during post-implantation development; these secondary differentially methylated regions appear necessary to maintain the imprinted expression state of individual genes. Despite the requirement for both types of differentially methylated sequence elements to achieve proper expression across imprinting clusters, methylation patterns are more labile at secondary differentially methylated regions. To understand the nature of this variability, we analyzed CpG dyad methylation patterns at both paternally and maternally methylated imprinted loci within multiple imprinting clusters. Results We determined that both paternally and maternally methylated secondary differentially methylated regions associated with imprinted genes display high levels of hemimethylation, 29–49%, in comparison to imprinting control regions which exhibited 8–12% hemimethylation. To explore how hemimethylation could arise, we assessed the differentially methylated regions for the presence of 5-hydroxymethylcytosine which could cause methylation to be lost via either passive and/or active demethylation mechanisms. We found enrichment of 5-hydroxymethylcytosine at paternally methylated secondary differentially methylated regions, but not at the maternally methylated sites we analyzed in this study. Conclusions We found high levels of hemimethylation to be a generalizable characteristic of secondary differentially methylated regions associated with imprinted genes. We propose that 5-hydroxymethylcytosine enrichment may be responsible for the variability in methylation status at paternally methylated secondary differentially methylated regions associated with imprinted genes. We further suggest that the high incidence of hemimethylation at secondary differentially methylated regions must be counteracted by continuous methylation acquisition at these loci

    Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of Transcription

    No full text
    Summary: Global changes in chromatin organization and the cessation of transcription during mitosis are thought to challenge the resumption of appropriate transcription patterns after mitosis. The acetyl-lysine binding protein BRD4 has been previously suggested to function as a transcriptional “bookmark” on mitotic chromatin. Here, genome-wide location analysis of BRD4 in erythroid cells, combined with data normalization and peak characterization approaches, reveals that BRD4 widely occupies mitotic chromatin. However, removal of BRD4 from mitotic chromatin does not impair post-mitotic activation of transcription. Additionally, histone mass spectrometry reveals global preservation of most posttranslational modifications (PTMs) during mitosis. In particular, H3K14ac, H3K27ac, H3K122ac, and H4K16ac widely mark mitotic chromatin, especially at lineage-specific genes, and predict BRD4 mitotic binding genome wide. Therefore, BRD4 is likely not a mitotic bookmark but only a “passenger.” Instead, mitotic histone acetylation patterns may constitute the actual bookmarks that restore lineage-specific transcription patterns after mitosis. : Chromatin reader protein BRD4 is thought to bookmark mitotic chromatin to propagate transcriptional states across mitosis. Behera et al. profiled and perturbed mitotic BRD4 chromatin occupancy to show that BRD4 is dispensable for this process. Instead, BRD4 mitotic chromatin association is likely a mere reflection of mitotically stable histone marks. Keywords: erythroid cells, mitotic bookmarking, mitosis, cell identity, BRD4, histone mark
    corecore