12 research outputs found

    Heat transfer analysis for falkner-skan boundary layer flow past a stationary wedge with slips boundary conditions considering temperature-dependent thermal conductivity

    Get PDF
    We studied the problem of heat transfer for Falkner-Skan boundary layer flow past a stationary wedge with momentum and thermal slip boundary conditions and the temperature dependent thermal conductivity. The governing partial differential equations for the physical situation are converted into a set of ordinary differential equations using scaling group of transformations. These are then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method. The momentum slip parameter δ leads to increase in the dimensionless velocity and the rate of heat transfer whilst it decreases the dimensionless temperature and the friction factor. The thermal slip parameter leads to the decrease rate of heat transfer as well as the dimensionless temperature. The dimensionless velocity, rate of heat transfer and the friction factor increase with the Falkner-Skan power law parameter m but the dimensionless fluid temperature decreases with m. The dimensionless fluid temperature and the heat transfer rate decrease as the thermal conductivity parameter A increases. Good agreements are found between the numerical results of the present paper with published results

    Investigation of heat mass transfer for combined convective slips flow: a lie group analysis

    Get PDF
    The steady laminar combined convective flow with heat and mass transfer of a Newtonian viscous incompressible fluid over a permeable flat plate with linear hydrodynamic and thermal slips has been investigated numerically. The velocity of the external flow, the suction/injection velocity and the temperature of the plate surface are assumed to vary nonlinearly following the power law with the distance along the plate from the origin. Lie group analysis is used to develop the similarity transformations and the governing momentum, the energy conservation and the mass conservation equations are converted to a system of coupled nonlinear ordinary differential equations with the associated boundary conditions. The resulting equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method. The effects of hydrodynamic slip parameter (a), thermal slip parameter (b), suction/injection parameter (fw), power law parameter (m), buoyancy ratio parameter (N), Prandtl number (Pr) and Schmidt number (Sc) on the fluid flow, heat transfer and mass transfer characteristics are investigated and presented graphically. We have also shown the effects of the Reynolds number (Re) and the power law parameter (m) on the velocity slip and the thermal slip factors. Good agreement is found between the numerical results of the present paper and published results

    New similarity solution of boundary layer flow along a continuously moving convectively heated horizontal plate by deductive group method

    No full text
    A mathematical model is presented and analyzed for steady two-dimensional non-isothermal laminar free convective boundary layer flow along a convectively heated moving horizontal plate. New similarity transformations are developed using one parameter deductive group transformations and hence the governing transport equations are reduced to a system of coupled, nonlinear ordinary differential equations with associated boundary conditions. The reduced equations are then solved numerically by an implicit finite difference numerical method. The effects of pertinent parameters on the non-dimensional velocity, temperature, friction factor and heat transfer rates are investigated and presented graphically. It is found that friction factor decreases with the free convective parameter and rate of heat transfer increases with the convection-conduction parameter
    corecore