40 research outputs found
A conceptual examination about the correlates of psychological capital (PsyCap) among the Saudi Arabian workforce
Psychological capital (PsyCap), which is considered a higher-order construct, is composed of hope, efficacy, optimism, and resilience. The importance of PsyCap stems from the fact that it has the propensity to motivate individuals in their accomplishment of organizational tasks and goals. The concept is related to many behavioral concepts including: subjective well-being, social capital, employee engagement, and emotional intelligence. The majority of the research literature on PsyCap has originated from the West, and limited literature exists about its antecedents and consequences among the Saudi population. Studies undertaken in Saudi Arabia must take into account unique cultural aspects. The present work attempts to identify the contribution that could emerge from the relationship of PsyCap, with constructs like subjective well-being, social capital, and employee engagement, considered through the prism of culture. It also recognizes the influence of, and upon, the external environment. Going beyond the replication of earlier studies, the present work considers the constructs to have a yin-yang relationship. The study presented a model of comprehensive framework emerging from the relevant literature to bring out the complex connections between PsyCap and other constructs. It also emphasized the importance of culture on the identified constructs, and its implication on contribution and performance. The proposed framework needs to be further tested by academics, researchers, and practitioners to confirm its practical implications in industry
Effect of Pregnancy on Haematological and Biochemical Profiles in the Mountain Gazelles (Gazella gazelle)
Abstract: The propose of this study was to investigate the effect of pregnancy on hematological and biochemical parameters. This parameters were measured in 20 blood samples collected from 10 pregnant and 10 non-pregnant captive mountain gazelles (Gazella gazella) in Saudi Arabia. The effects of pregnancy on the intracellular concentrations of sodium (Na + ), Potassium (K + ), Blood Urea Nitrogen (BUN), Alanine amino Transferase (ALT), Aspartate amino Transferase (AST), Total protein, albumin, Alkaline Phosphatase (AP), Creatinine, Cholesterol and Triglyceride were analyzed. The levels of Sodium ions, GGT, ALT, AST, cholesterol and triglycerides were significantly (p<0.01) increased in pregnant group compared to non-pregnant group. These result due to the physiological and metabolism changes during pregnancy. So this study suggested to supply pregnant Gazelles with proteins during pregnancy
A Novel Quinazoline Inhibits Hsp90 Protein, EGFR and Induces Apoptosis in Leukemia Cells
The objective of the first part of this study was to investigate the Hsp90 protein possible activ ity of a novel quinazoline Her2/ EGFR inhibitor (Co mpound No. 1: 4-(2-(4-Oxo-2-thio xo-1,4-d ihydroquinazolin-3(2H)yl)ethyl)benzenesulfonamide) p reviously synthesized by a collaborating group. Heat shock protein 90 (Hsp90) has a central ro le in regulation of several client proteins involved in cancers [1,2]. Several Hsp90 inhibitors of the natural or synthetic origin d isplayed potent anticancer activity [3,4]. Accordingly, Hsp90 emerged as an attractive target in the design of anticancer agents. To evaluate the binding mode of compound No. 1 into the ATPase site of Hsp90, a co mparative mo lecular docking study was performed using AutoDock 4.2. The results of this studywas compared with that of the co-crystallized ligand (ATI-13387X, Onalespib). The energy minimization process of the chemical structures of No. 1 was done following our previous report [5]. The results of the docking study revealed that No. 1 fit n icely into the ATPase site, and it displayed a binding free energy (Gb) of-7.21 kcal/ mo l and inhibition constant (Ki) of 5.19 µM to Hsp90, co mpared to Gb of-7.90 kcal/ mol and Ki of 1.62 µM for ATI-13387X. Furthermore, to confirm this result, the surface plasmon resonance (SPR) was devised to test the Hsp90 inhibition activity of No.1, wh ich was 51 nM co mpared to Rad icico l and 17AA G (1.8 nM, and 360 nM; respectively). Overall, co mpound No. 1 exh ibited pro mising Hsp90 inhib iting activity. The second part of the study focused on the effect of No. 1, Dinaciclib and their co mbinationsin HL-60 leukemia cells. The comb ination showed synergistic EGFR inhib ition effect in HL-60 cells. Moreover, No. 1, Dinaciclib and their combination caused a significant increase in the Sub-G1 co mpared to control and doxorubicin (24h), at the expense of S and G2/M cell cycle phases. Cyclin D3, was consequently inhibited by each of the two drugs, and synergistically by their comb ination in HL-60 cells. Furthermore, each of the two drugs downregulated Survivin, wh ich was synergistically inhib ited by the co mbination. In conclusion, co mpound No.1, Dinaciclib and their comb inations showed synergestic EGFR inhibit ion; and pro-apoptoticeffect in HL-60 cells.This project was funded by the deanship of scientific research, Umm Alqura University, KSA (DSR: 15-M ED-3-1-0060). Keywords: Novel quinazoline EGFR inhi bi tor, Hs p90 protein, Leukemi a cells
Theoretical study of the antioxidant mechanism and structure-activity relationships of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives: a computational approach
A theoretical thermodynamic study was conducted to investigate the antioxidant activity and mechanism of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives (OTP) using a Density Functional Theory (DFT) approach. The study assessed how solvent environments influence the antioxidant properties of these derivatives. With the increasing prevalence of diseases linked to oxidative stress, such as cancer and cardiovascular diseases, antioxidants are crucial in mitigating the damage caused by free radicals. Previous research has demonstrated the remarkable scavenging abilities of 1,3,4-oxadiazole derivatives, prompting this investigation into their potential using computational methods. DFT calculations were employed to analyze key parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE), to delineate the antioxidant mechanisms of these compounds. Our findings indicate that specific electron-donating groups such as amine on the phenyl rings significantly enhance the antioxidant activities of these derivatives. The study also integrates global and local reactivity descriptors, such as Fukui functions and HOMO-LUMO energies, to predict the stability and reactivity of these molecules, providing insights into their potential as effective synthetic antioxidants in pharmaceutical applications
Kinase Inhibitors of Novel Pyridopyrimidinone Candidates: Synthesis and In Vitro Anticancer Properties
A new class of pyridopyrimidinone compounds containing different nitrogenous heterocycles were synthesized starting from the key precursor 2-hydrazinyl-5-phenyl-7-(pyridin-3-yl)pyrido[2,3-d]pyrimidin-4(3H)-one via condensation with series of aromatic aldehydes and cyclization using different reagents as ethyl acetoacetate, ethyl cyanoacetate, diethyl malonate, and ammonium isothiocyanate. The bioassay results showed compound 6 to be highly effective towards three human cancer cell lines (HepG2, PC-3, and HCT-116) in vitro with promising activity values (IC50: 0.5 μM) relative to the standard doxorubicin (IC50: 0.6 μM). Kinase inhibitory evaluation of compound 6 displays hopeful inhibitory action against BRAF V600E, EGFR, and PDGFRβ at100 μM. The molecular docking studies supported the initial kinase assay
Structural Analysis and Reactivity Insights of (<i>E</i>)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory
This study presents a comprehensive exploration of the structure–reactivity relationship of (E)-3-bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy)furan-2(5H)-one. The study embarked on an in-depth investigation into the solid-state crystal structure of this organic compound, employing computational Density Functional Theory (DFT) and related methodologies, which have not extensively been used in the examination of such compounds. A single-crystal X-ray diffraction (SCXRD) analysis was initially performed, supplemented by a Hirshfeld surfaces analysis. This latter approach was instrumental in visualizing and quantifying intermolecular interactions within the crystal structures, offering a detailed representation of the molecule’s shape and properties within its crystalline environment. The concept of energy framework calculations was utilized to understand the varied types of energies contributing to the supramolecular architecture of the molecules within the crystal. The Conceptual DFT (CDFT) was applied to predict global reactivity descriptors and local nucleophilic/electrophilic Parr functions, providing a deeper understanding of the compound’s chemical reactivity properties. The aromatic character and π–π stacking ability were also evaluated with the help of LOLIPOP and ring aromaticity measures. This comprehensive approach not only provides a detailed description of the structure and properties of the investigated compound but also offers valuable insights into the design and development of new materials involving 1,2,4-triazole systems
Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development
Several kinds of anticancer drugs are presently commercially accessible, but low efficacy, solubility, and toxicity have reduced the overall therapeutic indices. Thus, the search for promising anticancer drugs continues. The interactions of numerous essential anticancer drugs with DNA are crucial to their biological functions. Here, the anticancer effects of N-ethyl toluene-4-sulphonamide (8a) and 2,5-Dichlorothiophene-3-sulphonamide (8b) on cell lines from breast and cervical cancer were investigated. The study also compared how these substances interacted with the hearing sperm DNA. The most promising anticancer drug was identified as 2,5-Dichlorothiophene-3-sulfonamide (8b), which showed GI50 of 7.2 ± 1.12 µM, 4.62 ± 0.13 µM and 7.13 ± 0.13 µM against HeLa, MDA-MB231 and MCF-7 cells, respectively. Moreover, it also exhibited significant electrostatic and non-electrostatic contributions to the binding free energy. The work utilized computational techniques, such as molecular docking and molecular dynamic (MD) simulations, to demonstrate the strong cytotoxicity of 2,5-Dichlorothiophene-3-sulfamide (8b) in comparison to standard Doxorubicin and cisplatin, respectively. Molecular docking experiments provided additional support for a role for the minor groove in the binding of the 2,5-Dichlorothiophene-3-sulfamide (8b)-DNA complex. The molecular docking studies and MD simulation showed that both compounds revealed comparable inhibitory potential against standard Doxorubicin and cisplatin. This study has the potential to lead to the discovery of new bioactive compounds for use in cancer treatment, including metallic and non-metallic derivatives of 2,5-Dichlorothiophene-3-sulfonamide (8b). It also emphasizes the worth of computational approaches in the development of new drugs and lays the groundwork for future research