12 research outputs found

    Subsonic Boundary-Layer Wavefront Spectra for a Range of Reynolds Numbers

    Get PDF
    Aero-optic measurements of turbulent boundary layers were performed in wind tunnels at the University of Notre Dame and California Institute of Technology for heated walls at a range of Reynolds numbers. Temporally resolved measurements of wavefronts were collected at a range of Mach numbers between 0.03 and 0.4 and the range of Re_θ between 1,700 and 20,000. Wavefront spectra for both heated and un-heated walls were extracted and compared to demonstrate that wall heating does not noticeably alter the shape of wavefront spectra in the boundary layer. The effect of Reynolds number on the normalized spectra was also presented, and an empirical spectral model was modified to account for Reynolds number dependence. Measurements of OPD_(rms) for heated walls were shown to be consistent with results from prior experiments, and a method of estimating OPD_(rms) and other boundary layer statistics from wavefront measurements of heated-wall boundary layers was demonstrated and discussed

    Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model

    Full text link
    The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrisations of a chiral SU(3) sigma-omega model. The selfconsistent collective expansion includes the effects of effective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show different types of phase transitions and even a crossover. The influence of the order of the phase transition and of the difference in the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or even a smooth crossover leads to distinctly different HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal hydrodynamical approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC

    Numerical Analysis of Distortion of a Vortex Filament

    No full text

    DNS Study on Lambda Vortex and Vortex Ring Formation by Vortex Filaments in Flow Transition

    No full text

    Computational Scheme for Calculating the Plume Backflow Region

    No full text
    corecore