54 research outputs found

    EGFR and Prion protein promote signaling via FOXO3a-KLF5 resulting in clinical resistance to platinum agents in colorectal cancer

    Get PDF
    Epidermal growth factor receptor (EGFR) supports colorectal cancer progression via oncogenic signaling. Anti-EGFR therapy is being investigated as a clinical option for colorectal cancer, and an observed interaction between EGFR and Prion protein has been detected in neuronal cells. We hypothesized that PrPC expression levels may regulate EGFR signaling and that detailed understanding of this signaling pathway may enable identification of resistance mechanisms and new actionable targets in colorectal cancer. We performed molecular pathway analysis following knockdown of PrPC or inhibition of EGFR signaling via gefitinib to identify changes in expression of key signaling proteins that determine cellular sensitivity or resistance to cisplatin. Expression of these proteins was examined in matched primary and metastatic patient samples and was correlated for resistance to therapy and progression of disease. Utilizing three colorectal cancer cell lines, we observed a correlation between high expression of PrPC and resistance to cisplatin. Investigation of molecular signaling in a resistant cell line revealed that PrPC contributed to signaling via colocalization with EGFR, which could be overcome by targeting p38 mitogen-activated protein kinases (p38 MAPK). We revealed that the level of Krüppel-like factor 5 (KLF5), a target downstream of p38 MAPK, was predictive for cell line and patient response to platinum agents. Further, high KLF5 expression was observed in BRAF-mutant colorectal cancer. Our study indicates that the EGFR to KLF5 pathway is predictive of patient progression on platinum-based therapy

    The role of breast cancer derived-exosomes in the tumour micro-environment

    No full text

    Protein kinase CK2 activation is required for transforming growth factor β‐induced epithelial–mesenchymal transition

    No full text
    Transforming growth factor β (TGFβ) is overexpressed in advanced cancers and promotes tumorigenesis by inducing epithelial–mesenchymal transition (EMT), which enhances invasiveness and metastasis. Although we previously reported that EMT could be induced by increasing CK2 activity alone, it is not known whether CK2 also plays an essential role in TGFβ‐induced EMT. Therefore, in the present study, we investigated whether TGFβ signaling could activate CK2 and, if so, whether such activation is required for TGFβ‐induced EMT. We found that CK2 is activated by TGFβ treatment, and that activity peaks at 48 h after treatment. CK2 activation is dependent on TGFβ receptor (TGFBR) I kinase activity, but independent of SMAD4. Inhibition of CK2 activation through the use of either a CK2 inhibitor or shRNA against CSNK2A1 inhibited TGFβ‐induced EMT. TGFβ signaling decreased CK2β but did not affect CK2α protein levels, resulting in a quantitative imbalance between the catalytic α and regulatory β subunits, thereby increasing CK2 activity. The decrease in CK2β expression was dependent on TGFBRI kinase activity and the ubiquitin–proteasome pathway. The E3 ubiquitin ligases responsible for TGFβ‐induced CK2β degradation were found to be CHIP and WWP1. Okadaic acid (OA) pretreatment protected CK2β from TGFβ‐induced degradation, suggesting that dephosphorylation of CK2β by an OA‐sensitive phosphatase might be required for CK2 activation in TGFβ‐induced EMT. Collectively, our results suggest CK2 as a therapeutic target for the prevention of EMT and metastasis of cancers

    The Impact of the Cancer Microenvironment on Macrophage Phenotypes

    No full text
    Within the tumor microenvironment, there is an intricate communication happening between tumor and stromal cells. This information exchange, in the form of cytokines, growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is capable of modulating the function of immune cells. The triggering of specific responses, including phenotypic alterations, can ultimately result in either immune surveillance or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the different cellular phenotypes possible, depending on the tumor microenvironmental context. While our understanding of macrophage responses is well documented in vitro, surprisingly, little work has been done to confirm these observations in the cancer microenvironment. In fact, there are examples of opposing reactions of macrophages to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different macrophage lineages, for example tissue-resident and monocyte-derived macrophages, respond differently to cytokines and other cancer-derived signals. In this review article, we will describe and discuss the diverging reports on how cancer cells influence monocyte-derived and tissue-resident macrophage traits in vivo.</p

    NLRP3 negatively regulates Treg differentiation through Kpna2-mediated nuclear translocation

    No full text
    Naïve CD4 T cells in the periphery differentiate into regulatory T cells (Tregs) in which Foxp3 is expressed for their suppressive function. NLRP3, a pro-inflammatory molecule, is known to be involved in inflammasome activation associated with several diseases. Recently, the expression of NLRP3 in CD4 T cells, as well as in myeloid cells, has been described; however, a role of T cell-intrinsic NLRP3 in Treg differentiation remains unknown. Here, we report that NLRP3 impeded the expression of Foxp3 independent of inflammasome activation in Tregs. NLRP3-deficient mice elevate Treg generation in various organs in the de novo pathway. NLRP3 deficiency increased the amount and suppressive activity of Treg populations, whereas NLRP3 overexpression reduced Foxp3 expression and Treg abundance. Importantly, NLRP3 interacted with Kpna2 and translocated to the nucleus from the cytoplasm under Tregpolarizing conditions. Taken together, our results identify a novel role for NLRP3 as a new negative regulator of Treg differentiation, mediated via its interaction with Kpna2 for nuclear translocation.</p

    Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance

    No full text
    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes
    corecore