12 research outputs found

    Integrated Control Using the SOFFT Control Structure

    Get PDF
    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities

    A combined stochastic feedforward and feedback control design methodology with application to autoland design

    Get PDF
    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented

    Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    Get PDF
    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved

    Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 4: Preliminary nonscanner models and count conversion algorithms

    Get PDF
    Two count conversion algorithms and the associated dynamic sensor model for the M/WFOV nonscanner radiometers are defined. The sensor model provides and updates the constants necessary for the conversion algorithms, though the frequency with which these updates were needed was uncertain. This analysis therefore develops mathematical models for the conversion of irradiance at the sensor field of view (FOV) limiter into data counts, derives from this model two algorithms for the conversion of data counts to irradiance at the sensor FOV aperture and develops measurement models which account for a specific target source together with a sensor. The resulting algorithms are of the gain/offset and Kalman filter types. The gain/offset algorithm was chosen since it provided sufficient accuracy using simpler computations

    Investigation, development and application of optimal output feedback theory. Vol. 4: Measures of eigenvalue/eigenvector sensitivity to system parameters and unmodeled dynamics

    Get PDF
    Some measures of eigenvalue and eigenvector sensitivity applicable to both continuous and discrete linear systems are developed and investigated. An infinite series representation is developed for the eigenvalues and eigenvectors of a system. The coefficients of the series are coupled, but can be obtained recursively using a nonlinear coupled vector difference equation. A new sensitivity measure is developed by considering the effects of unmodeled dynamics. It is shown that the sensitivity is high when any unmodeled eigenvalue is near a modeled eigenvalue. Using a simple example where the sensor dynamics have been neglected, it is shown that high feedback gains produce high eigenvalue/eigenvector sensitivity. The smallest singular value of the return difference is shown not to reflect eigenvalue sensitivity since it increases with the feedback gains. Using an upper bound obtained from the infinite series, a procedure to evaluate whether the sensitivity to parameter variations is within given acceptable bounds is developed and demonstrated by an example

    A stochastic optimal feedforward and feedback control methodology for superagility

    Get PDF
    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET

    Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 3: ERBE scanner measurement accuracy analysis due to reduced housekeeping data

    Get PDF
    The accuracy of scanner measurements was evaluated when the sampling frequency of sensor housekeeping (HK) data was reduced from once every scan to once every eight scans. The resulting increase in uncertainty was greatest for sources with rapid or extreme temperature changes. This analysis focused on the mirror attenuator mosaic (MAM) baffle and plate and scanner radiometer baffle due to their relatively high temperature changes during solar calibrations. Since only solar simulator data were available, the solar temperatures were approximated on these components and the radiative and thermal gradients in the MAM baffle due to reflected sunlight. Of the two cases considered for the MAM plate and baffle temperatures, one uses temperatures obtained from the ground calibration. The other attempt uses temperatures computed from the MAM baffle model. This analysis shows that the heat input variations due largely to the solar radiance and irradiance during a scan cycle are small. It also demonstrates that reasonable intervals longer than the current HK data acquisition interval should not significantly affect the estimation of a radiation field in the sensor field-of-view

    Optimal aeroassisted coplanar orbital transfer using an energy model

    Get PDF
    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented

    A variable-gain output feedback control design methodology

    Get PDF
    A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility

    Robust Adaptive Data Encoding and Restoration

    No full text
    This is the final report for NASA cooperative agreement and covers the period from 01 October, 1997 to 11 April, 2000. The research during this period was performed in three primary, but related, areas. 1. Evaluation of integrated information adaptive imaging. 2. Improvements in memory utilization and performance of the multiscale retinex with color restoration (MSRCR). 3. Commencement of a theoretical study to evaluate the non-linear retinex image enhancement technique. The research resulted in several publications, and an intellectual property disclosure to the NASA patent council in May, 1999
    corecore