126 research outputs found
Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration
The modified gravity, which eliminates the need for dark energy and which
seems to be stable, is considered. The terms with positive powers of the
curvature support the inflationary epoch while the terms with negative powers
of the curvature serve as effective dark energy, supporting current cosmic
acceleration. The equivalent scalar-tensor gravity may be compatible with the
simplest solar system experiments.Comment: 23 pages, 3 figures, discussion is extended, references added,
version to appear in PR
The nearly Newtonian regime in Non-Linear Theories of Gravity
The present paper reconsiders the Newtonian limit of models of modified
gravity including higher order terms in the scalar curvature in the
gravitational action. This was studied using the Palatini variational principle
in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and
[Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)]
with contradicting results. Here a different approach is used, and problems in
the previous attempts are pointed out. It is shown that models with negative
powers of the scalar curvature, like the ones used to explain the present
accelerated expansion, as well as their generalization which include positive
powers, can give the correct Newtonian limit, as long as the coefficients of
these powers are reasonably small. Some consequences of the performed analysis
seem to raise doubts for the way the Newtonian limit was derived in the purely
metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217
(2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf
72}, 083505 (2005)] in which the problem of the Newtonian limit of both the
purely metric and the Palatini formalism is discussed, using the equivalent
Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio
Fluid Interpretation of Cardassian Expansion
A fluid interpretation of Cardassian expansion is developed. Here, the
Friedmann equation takes the form where contains
only matter and radiation (no vacuum). The function g(\rhom) returns to the
usual 8\pi\rhom/(3 m_{pl}^2) during the early history of the universe, but
takes a different form that drives an accelerated expansion after a redshift . One possible interpretation of this function (and of the right hand
side of Einstein's equations) is that it describes a fluid with total energy
density \rho_{tot} = {3 m_{pl}^2 \over 8 \pi} g(\rhom) = \rhom + \rho_K
containing not only matter density (mass times number density) but also
interaction terms . These interaction terms give rise to an effective
negative pressure which drives cosmological acceleration. These interactions
may be due to interacting dark matter, e.g. with a fifth force between
particles . Such interactions may be intrinsically four
dimensional or may result from higher dimensional physics. A fully relativistic
fluid model is developed here, with conservation of energy, momentum, and
particle number. A modified Poisson's equation is derived. A study of
fluctuations in the early universe is presented, although a fully relativistic
treatment of the perturbations including gauge choice is as yet incomplete.Comment: 25 pages, 1 figure. Replaced with published version. Title changed in
journa
Massive Charged Scalar Quasinormal Modes of Reissner-N\"ordstrom Black Hole Surrounded by Quintessence
We evaluate the complex frequencies of the normal modes for the massive
charged scalar field perturbations around a Reissner-N\"ordstrom black hole
surrounded by a static and spherically symmetric quintessence using third order
WKB approximation approach. Due to the presence of quintessence, quasinormal
frequencies damp more slowly. We studied the variation of quasinormal
frequencies with charge of the black bole, mass and charge of perturbating
scalar field and the quintessential state parameter.Comment: 9 pages, 9 figures and one tabl
The Void Abundance with Non-Gaussian Primordial Perturbations
We use a Press-Schechter-like calculation to study how the abundance of voids
changes in models with non-Gaussian initial conditions. While a positive
skewness increases the cluster abundance, a negative skewness does the same for
the void abundance. We determine the dependence of the void abundance on the
non-Gaussianity parameter fnl for the local-model bispectrum-which approximates
the bispectrum in some multi-field inflation models-and for the equilateral
bispectrum, which approximates the bispectrum in e.g. string-inspired DBI
models of inflation. We show that the void abundance in large-scale-structure
surveys currently being considered should probe values as small as fnl < 10 and
fnl^eq < 30, over distance scales ~10 Mpc.Comment: Submitted to JCA
Predicted modulated differential rates for direct WIMP searches at low energy transfers
The differential event rate for direct detection of dark matter, both the
time averaged and the modulated one due to the motion of the Earth, are
discussed. The calculations focus on relatively light cold dark matter
candidates (WIMP) and low energy transfers. It is shown that for sufficiently
light WIMPs the extraction of relatively large nucleon cross sections is
possible. Furthermore for some WIMP masses the modulation amplitude may change
sign, meaning that, in such a case, the maximum rate may occur six months later
than naively expected. This effect can be exploited to yield information about
the mass of the dark matter candidate, if and when the observation of the
modulation of the event rate is established.Comment: 16 pages, 22 figures; references adde
Bulk scalar field in brane-worlds with induced gravity inspired by the term
We obtain the effective field equations in a brane-world scenario within the
framework of a DGP model where the action on the brane is an arbitrary function
of the Ricci scalar, , and the bulk action includes a scalar field
in the matter Lagrangian. We obtain the Friedmann equations and acceleration
conditions in the presence of the bulk scalar field for the term in
four-dimensional gravity.Comment: 9 pages, to appear in JCA
Gravitational Lensing and f(R) theories in the Palatini approach
We investigate gravitational lensing in the Palatini approach to the f(R)
extended theories of gravity. Starting from an exact solution of the f(R) field
equations, which corresponds to the Schwarzschild-de Sitter metric and, on the
basis of recent studies on this metric, we focus on some lensing observables,
in order to evaluate the effects of the non linearity of the gravity
Lagrangian. We give estimates for some astrophysical events, and show that
these effects are tiny for galactic lenses, but become interesting for
extragalactic ones.Comment: 7 Pages, RevTex, 1 eps figure; references added; revised to match the
version accepted for publication in General Relativity and Gravitatio
Precision Primordial He Measurement with CMB Experiments
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are
two major pillars of cosmology. Standard BBN accurately predicts the primordial
light element abundances (He, D, He and Li), depending on one
parameter, the baryon density. Light element observations are used as a
baryometers. The CMB anisotropies also contain information about the content of
the universe which allows an important consistency check on the Big Bang model.
In addition CMB observations now have sufficient accuracy to not only determine
the total baryon density, but also resolve its principal constituents, H and
He. We present a global analysis of all recent CMB data, with special
emphasis on the concordance with BBN theory and light element observations. We
find and
(fraction of baryon mass as He) using CMB data alone, in agreement with
He abundance observations. With this concordance established we show that
the inclusion of BBN theory priors significantly reduces the volume of
parameter space. In this case, we find
and . We also find that the inclusion of deuterium
abundance observations reduces the and ranges by a factor
of 2. Further light element observations and CMB anisotropy experiments
will refine this concordance and sharpen BBN and the CMB as tools for precision
cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with
journal versio
Cosmic Density Perturbations from Late-Decaying Scalar Condensations
We study the cosmic density perturbations induced from fluctuation of the
amplitude of late-decaying scalar condensations (called \phi) in the scenario
where the scalar field \phi once dominates the universe. In such a scenario,
the cosmic microwave background (CMB) radiation originates to decay products of
the scalar condensation and hence its anisotropy is affected by the fluctuation
of \phi. It is shown that the present cosmic density perturbations can be
dominantly induced from the primordial fluctuation of \phi, not from the
fluctuation of the inflaton field. This scenario may change constraints on the
source of the density perturbations, like inflation. In addition, a correlated
mixture of adiabatic and isocurvature perturbations may arise in such a
scenario; possible signals in the CMB power spectrum are discussed. We also
show that the simplest scenario of generating the cosmic density perturbations
only from the primordial fluctuation of \phi (i.e., so-called ``curvaton''
scenario) is severely constrained by the current measurements of the CMB
angular power spectrum if correlated mixture of the adiabatic and isocurvature
perturbations are generated.Comment: 31pages, 14figure
- …