52 research outputs found

    Preliminary use of oxygen stable isotopes and the 1983 El Niño to assess the accuracy of aging black rockfish (Sebastes melanops)

    Get PDF
    Black rockfish (Sebastes melanops) range from California to Alaska and are found in both nearshore and shallow continental shelf waters (Love et al., 2002). Juveniles and subadults inhabit shallow water, moving deeper as they grow. Generally, adults are found at depths shallower than 55 meters and reportedly live up to 50 years. The species is currently managed by using information from an age-structured stock assessment model (Ralston and Dick, 2003)

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    1 Table of Contents

    No full text
    “Disclaimer: This information is distributed solely for the purpose of predissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy”

    Spatio-temporal analysis of compositional data: increased precision and improved workflow using model-based inputs to stock assessment

    No full text
    Stock assessment models are fitted to abundance-index, fishery catch, and age/length/sex composition data that are estimated from survey and fishery records. Research has developed spatio-temporal methods to estimate abundance indices, but there is little research regarding model-based methods to generate age/length/sex composition data. We demonstrate a spatio-temporal approach to generate composition data and a multinomial sample size that approximates the estimated imprecision. A simulation experiment comparing spatio-temporal and design-based methods demonstrates a 32% increase in input sample size for the spatio-temporal estimator. A Stock Synthesis assessment used to manage lingcod in the California Current also shows a 17% increase in sample size and better model fit using the spatio-temporal estimator, resulting in smaller standard errors when estimating spawning biomass. We conclude that spatio-temporal approaches are feasible for estimating both abundance-index and compositional data, thereby providing a unified approach for generating inputs for stock assessments. We hypothesize that spatio-temporal methods will improve statistical efficiency for composition data in many stock assessments, and recommend that future research explore the impact of including additional habitat or sampling covariates.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Executive Summary............................................................................................ 5

    No full text
    Disclaimer: This information is distributed solely for the purpose of predissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy. DRAFT Status of the U.S. petrale sole resource in 2012 b

    Accounting for spatio-temporal variation and fisher targeting when estimating abundance from multispecies fishery data

    No full text
    Estimating trends in abundance from fishery catch rates is one of the oldest endeavors in fisheries science. However, many jurisdictions do not analyze fishery catch rates due to concerns that these data confound changes in fishing behavior (adjustments in fishing location or gear operation) with trends in abundance. In response, we develop a spatial dynamic factor analysis (SDFA) model that decomposes covariation in multispecies catch rates into components representing spatial variation and fishing behavior. SDFA estimates spatiotemporal variation in fish density for multiple species, and accounts for fisher behavior at large spatial scales (i.e., choice of fishing location) while controlling for fisher behavior at fine spatial scales (e.g., daily timing of fishing activity). We first use a multispecies simulation experiment to show that SDFA decreases bias in abundance indices relative to ignoring spatial adjustments and fishing tactics. We then present results for a case study involving Petrale sole in the California current, for which SDFA estimates initially stable and then increasing abundance for the period 1986-2003, in accordance with fishery-independent survey and stock assessment estimates.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates

    No full text
    Abstract Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20 m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75-100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size-frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America

    Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current.

    No full text
    Rockfish are an important component of West Coast fisheries and California Current food webs, and recruitment (cohort strength) for rockfish populations has long been characterized as highly variable for most studied populations. Research efforts and fisheries surveys have long sought to provide greater insights on both the environmental drivers, and the fisheries and ecosystem consequences, of this variability. Here, variability in the temporal and spatial abundance and distribution patterns of young-of-the-year (YOY) rockfishes are described based on midwater trawl surveys conducted throughout the coastal waters of California Current between 2001 and 2019. Results confirm that the abundance of winter-spawning rockfish taxa in particular is highly variable over space and time. Although there is considerable spatial coherence in these relative abundance patterns, there are many years in which abundance patterns are very heterogeneous over the scale of the California Current. Results also confirm that the high abundance levels of YOY rockfish observed during the 2014-2016 large marine heatwave were largely coastwide events. Species association patterns of pelagic YOY for over 20 rockfish taxa in space and time are also described. The overall results will help inform future fisheries-independent surveys, and will improve future indices of recruitment strength used to inform stock assessment models and marine ecosystem status reports

    Fisheries management under climate and environmental uncertainty: control rules and performance simulation

    No full text
    The ability of management strategies to achieve the fishery management goals are impacted by environmental variation and, therefore, also by global climate change. Management strategies can be modified to use environmental data using the “dynamic B0” concept, and changing the set of years used to define biomass reference points. Two approaches have been developed to apply management strategy evaluation to evaluate the impact of environmental variation on the performance of management strategies. The “mechanistic approach” estimates the relationship between the environment and elements of the population dynamics of the fished species and makes predictions for population trends using the outputs from global climate models. In contrast, the “empirical approach” examines possible broad scenarios without explicitly identifying mechanisms. Many reviewed studies have found that modifying management strategies to include environmental factors does not improve the ability to achieve management goals much, if at all, and only if the manner in which these factors drive the system is well known. As such, until the skill of stock projection models improves, it seems more appropriate to consider the implications of plausible broad forecasts related to how biological parameters may change in the future as a way to assess the robustness of management strategies, rather than attempting specific predictions per se
    corecore