1,037 research outputs found

    A geometry package for generation of input data for a three-dimensional potential-flow program

    Get PDF
    The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations

    A Cybersecurity Assessment of Health Data Ecosystems

    Get PDF
    This paper is an exploratory study that investigates data collected and used by health plans and reviews the laws and regulations governing this data to identify the gaps in protections and provide recommendations for eliminating these gaps. Health insurance companies collect a wide array of data about the people they insure, data that is often only peripherally relevant to the service these companies provide. The data environment currently consists of seven categories of data: personal health information, summary health information, personally identifiable information, financial information, professional information, biometric information, and lifestyle data or social indicators of health. Much of this data is protected under the Health Insurance Portability and Accountability Act (HIPAA) and under an array of other health care laws and regulations; however, there is a category of data not covered by these protections. Lifestyle data or social indicators of health is a category of data that is readily available through digital interactions with third-party platforms, wearable devices, and internet of things devices. This data can be identifiable to the individual but lacks the most basic regulatory and security protections. Weaknesses in HIPAA provide loopholes for data traditionally thought to be protected

    Diffusion-limited aggregation as branched growth

    Full text link
    I present a first-principles theory of diffusion-limited aggregation in two dimensions. A renormalized mean-field approximation gives the form of the unstable manifold for branch competition, following the method of Halsey and Leibig [Phys. Rev. A {\bf 46}, 7793 (1992)]. This leads to a result for the cluster dimensionality, D \approx 1.66, which is close to numerically obtained values. In addition, the multifractal exponent \tau(3) = D in this theory, in agreement with a proposed `electrostatic' scaling law.Comment: 13 pages, one figure not included (available by request, by ordinary mail), Plain Te

    Exact Multifractal Spectra for Arbitrary Laplacian Random Walks

    Full text link
    Iterated conformal mappings are used to obtain exact multifractal spectra of the harmonic measure for arbitrary Laplacian random walks in two dimensions. Separate spectra are found to describe scaling of the growth measure in time, of the measure near the growth tip, and of the measure away from the growth tip. The spectra away from the tip coincide with those of conformally invariant equilibrium systems with arbitrary central charge c≤1c\leq 1, with cc related to the particular walk chosen, while the scaling in time and near the tip cannot be obtained from the equilibrium properties.Comment: 4 pages, 3 figures; references added, minor correction

    A three-dimensional potential-flow program with a geometry package for input data generation

    Get PDF
    Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases

    The branching structure of diffusion-limited aggregates

    Full text link
    I analyze the topological structures generated by diffusion-limited aggregation (DLA), using the recently developed "branched growth model". The computed bifurcation number B for DLA in two dimensions is B ~ 4.9, in good agreement with the numerically obtained result of B ~ 5.2. In high dimensions, B -> 3.12; the bifurcation ratio is thus a decreasing function of dimensionality. This analysis also determines the scaling properties of the ramification matrix, which describes the hierarchy of branches.Comment: 6 pages, 1 figure, Euro-LaTeX styl

    Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load

    Get PDF
    After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning

    Diffusion Limited Aggregation with Power-Law Pinning

    Full text link
    Using stochastic conformal mapping techniques we study the patterns emerging from Laplacian growth with a power-law decaying threshold for growth RN−γR_N^{-\gamma} (where RNR_N is the radius of the N−N- particle cluster). For γ>1\gamma > 1 the growth pattern is in the same universality class as diffusion limited aggregation (DLA) growth, while for γ<1\gamma < 1 the resulting patterns have a lower fractal dimension D(γ)D(\gamma) than a DLA cluster due to the enhancement of growth at the hot tips of the developing pattern. Our results indicate that a pinning transition occurs at γ=1/2\gamma = 1/2, significantly smaller than might be expected from the lower bound αmin≃0.67\alpha_{min} \simeq 0.67 of multifractal spectrum of DLA. This limiting case shows that the most singular tips in the pruned cluster now correspond to those expected for a purely one-dimensional line. Using multifractal analysis, analytic expressions are established for D(γ)D(\gamma) both close to the breakdown of DLA universality class, i.e., γ≲1\gamma \lesssim 1, and close to the pinning transition, i.e., γ≳1/2\gamma \gtrsim 1/2.Comment: 5 pages, e figures, submitted to Phys. Rev.

    Vitamin D and Its Effects on Glucose Homeostasis, Cardiovascular Function and Immune Function

    Get PDF
    In recent years there has been increasing interest in the non-skeletal effects of vitamin D. It has been suggested that vitamin D deficiency may influence the development of diabetes, cardiovascular dysfunction and autoimmune diseases. This review focuses on the current knowledge of the effects of vitamin D and its deficiency on cardiovascular function, glucose homeostasis and immune function, with a particular focus on children. Although, there is good evidence to show that there is an association between vitamin D deficiency and an abnormality of the above systems, there is little evidence to show that vitamin D supplementation leads to an improvement in function, especially in childhood

    Exact Multifractal Exponents for Two-Dimensional Percolation

    Full text link
    The harmonic measure (or diffusion field or electrostatic potential) near a percolation cluster in two dimensions is considered. Its moments, summed over the accessible external hull, exhibit a multifractal spectrum, which I calculate exactly. The generalized dimensions D(n) as well as the MF function f(alpha) are derived from generalized conformal invariance, and are shown to be identical to those of the harmonic measure on 2D random walks or self-avoiding walks. An exact application to the anomalous impedance of a rough percolative electrode is given. The numerical checks are excellent. Another set of exact and universal multifractal exponents is obtained for n independent self-avoiding walks anchored at the boundary of a percolation cluster. These exponents describe the multifractal scaling behavior of the average nth moment of the probabity for a SAW to escape from the random fractal boundary of a percolation cluster in two dimensions.Comment: 5 pages, 3 figures (in colors
    • …
    corecore