821 research outputs found

    Diffusion-limited aggregation as branched growth

    Full text link
    I present a first-principles theory of diffusion-limited aggregation in two dimensions. A renormalized mean-field approximation gives the form of the unstable manifold for branch competition, following the method of Halsey and Leibig [Phys. Rev. A {\bf 46}, 7793 (1992)]. This leads to a result for the cluster dimensionality, D \approx 1.66, which is close to numerically obtained values. In addition, the multifractal exponent \tau(3) = D in this theory, in agreement with a proposed `electrostatic' scaling law.Comment: 13 pages, one figure not included (available by request, by ordinary mail), Plain Te

    Crossing the threshold : an analysis of IBRD graduation policy

    Get PDF
    According to World Bank policy, countries remain eligible to borrow from the International Bank for Reconstruction and Development until they are able to sustain long-term development without further recourse to Bank financing. Graduation from the Bank is not an automatic consequence of reaching a particular income level, but rather is supposed to be based on a determination of whether the country has reached a level of institutional development and capital-market access that enables it to sustain its own development process without recourse to Bank funding. This paper assesses how International Bank for Reconstruction and Development graduation policy operates in practice, investigating what income and non-income factors appear to have influenced graduation decisions in recent decades, based on panel data for 1982 through 2008. Explanatory variables include the per-capita income of the country, as well as measures of institutional development and market access that are cited as criteria by the graduation policy, and other plausible explanatory variables that capture the levels of economic development and vulnerability of the country. The authors find that the observed correlates of Bank graduation are generally consistent with the stated policy. Countries that are wealthier, more creditworthy, more institutionally developed, and less vulnerable to shocks are more likely to have graduated. Predicted probabilities generated by the model correspond closely to the actual graduation and de-graduation experiences of most countries (such as Korea and Trinidad and Tobago), and suggest that Hungary and Latvia may have graduated prematurely -- a prediction consistent with their subsequent return to borrowing from the Bank in the wake of the global financial crisis.Economic Theory&Research,Emerging Markets,Banks&Banking Reform,Labor Policies,Debt Markets

    Dynamic roughening and fluctuations of dipolar chains

    Get PDF
    Nonmagnetic particles in a carrier ferrofluid acquire an effective dipolar moment when placed in an external magnetic field. This fact leads them to form chains that will roughen due to Brownian motion when the magnetic field is decreased. We study this process through experiments, theory and simulations, three methods that agree on the scaling behavior over 5 orders of magnitude. The RMS width goes initially as t1/2t^{1/2}, then as t1/4t^{1/4} before it saturates. We show how these results complement existing results on polymer chains, and how the chain dynamics may be described by a recent non-Markovian formulation of anomalous diffusion.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Two-Dimensional Copolymers and Exact Conformal Multifractality

    Full text link
    We consider in two dimensions the most general star-shaped copolymer, mixing random (RW) or self-avoiding walks (SAW) with specific interactions thereof. Its exact bulk or boundary conformal scaling dimensions in the plane are all derived from an algebraic structure existing on a random lattice (2D quantum gravity). The multifractal dimensions of the harmonic measure of a 2D RW or SAW are conformal dimensions of certain star copolymers, here calculated exactly as non rational algebraic numbers. The associated multifractal function f(alpha) are found to be identical for a random walk or a SAW in 2D. These are the first examples of exact conformal multifractality in two dimensions.Comment: 4 pages, 2 figures, revtex, to appear in Phys. Rev. Lett., January 199

    Current-voltage scaling of a Josephson-junction array at irrational frustration

    Full text link
    Numerical simulations of the current-voltage characteristics of an ordered two-dimensional Josephson junction array at an irrational flux quantum per plaquette are presented. The results are consistent with an scaling analysis which assumes a zero temperature vortex glass transition. The thermal correlation length exponent characterizing this transition is found to be significantly different from the corresponding value for vortex-glass models in disordered two-dimensional superconductors. This leads to a current scale where nonlinearities appear in the current-voltage characteristics decreasing with temperature TT roughly as T2T^2 in contrast with the T3T^3 behavior expected for disordered models.Comment: RevTex 3.0, 12 pages with Latex figures, to appear in Phys. Rev. B 54, Rapid. Com

    A Ball in a Groove

    Full text link
    We study the static equilibrium of an elastic sphere held in a rigid groove by gravity and frictional contacts, as determined by contact mechanics. As a function of the opening angle of the groove and the tilt of the groove with respect to the vertical, we identify two regimes of static equilibrium for the ball. In the first of these, at large opening angle or low tilt, the ball rolls at both contacts as it is loaded. This is an analog of the "elastic" regime in the mechanics of granular media. At smaller opening angles or larger tilts, the ball rolls at one contact and slides at the other as it is loaded, analogously with the "plastic" regime in the mechanics of granular media. In the elastic regime, the stress indeterminacy is resolved by the underlying kinetics of the ball response to loading.Comment: RevTeX 3.0, 4 pages, 2 eps figures included with eps

    Conformal Mapping on Rough Boundaries I: Applications to harmonic problems

    Full text link
    The aim of this study is to analyze the properties of harmonic fields in the vicinity of rough boundaries where either a constant potential or a zero flux is imposed, while a constant field is prescribed at an infinite distance from this boundary. We introduce a conformal mapping technique that is tailored to this problem in two dimensions. An efficient algorithm is introduced to compute the conformal map for arbitrarily chosen boundaries. Harmonic fields can then simply be read from the conformal map. We discuss applications to "equivalent" smooth interfaces. We study the correlations between the topography and the field at the surface. Finally we apply the conformal map to the computation of inhomogeneous harmonic fields such as the derivation of Green function for localized flux on the surface of a rough boundary

    Renormalization Theory of Stochastic Growth

    Full text link
    An analytical renormalization group treatment is presented of a model which, for one value of parameters, is equivalent to diffusion limited aggregation. The fractal dimension of DLA is computed to be 2-1/2+1/5=1.7. Higher multifractal exponents are also calculated and found in agreement with numerical results. It may be possible to use this technique to describe the dielectric breakdown model as well, which is given by different parameter values.Comment: 39 pages, LaTeX, 11 figure

    Parallel Algorithm and Dynamic Exponent for Diffusion-limited Aggregation

    Full text link
    A parallel algorithm for ``diffusion-limited aggregation'' (DLA) is described and analyzed from the perspective of computational complexity. The dynamic exponent z of the algorithm is defined with respect to the probabilistic parallel random-access machine (PRAM) model of parallel computation according to TLzT \sim L^{z}, where L is the cluster size, T is the running time, and the algorithm uses a number of processors polynomial in L\@. It is argued that z=D-D_2/2, where D is the fractal dimension and D_2 is the second generalized dimension. Simulations of DLA are carried out to measure D_2 and to test scaling assumptions employed in the complexity analysis of the parallel algorithm. It is plausible that the parallel algorithm attains the minimum possible value of the dynamic exponent in which case z characterizes the intrinsic history dependence of DLA.Comment: 24 pages Revtex and 2 figures. A major improvement to the algorithm and smaller dynamic exponent in this versio

    Contemplative Science: An Insider's Prospectus

    Get PDF
    This chapter describes the potential far‐reaching consequences of contemplative higher education for the fields of science and medicine
    corecore