1,383 research outputs found

    Directed polymers in random media under confining force

    Full text link
    The scaling behavior of a directed polymer in a two-dimensional (2D) random potential under confining force is investigated. The energy of a polymer with configuration {y(x)}\{y(x)\} is given by H\big(\{y(x)\}\big) = \sum_{x=1}^N \exyx + \epsilon \Wa^\alpha, where η(x,y)\eta(x,y) is an uncorrelated random potential and \Wa is the width of the polymer. Using an energy argument, it is conjectured that the radius of gyration Rg(N)R_g(N) and the energy fluctuation ΔE(N)\Delta E(N) of the polymer of length NN in the ground state increase as Rg(N)∼NνR_g(N)\sim N^{\nu} and ΔE(N)∼Nω\Delta E(N)\sim N^\omega respectively with ν=1/(1+α)\nu = 1/(1+\alpha) and ω=(1+2α)/(4+4α)\omega = (1+2\alpha)/(4+4\alpha) for α≥1/2\alpha\ge 1/2. A novel algorithm of finding the exact ground state, with the effective time complexity of \cO(N^3), is introduced and used to confirm the conjecture numerically.Comment: 9 pages, 7 figure

    Singularities of the renormalization group flow for random elastic manifolds

    Full text link
    We consider the singularities of the zero temperature renormalization group flow for random elastic manifolds. When starting from small scales, this flow goes through two particular points l∗l^{*} and lcl_{c}, where the average value of the random squared potential turnes negative ($l^{*}$) and where the fourth derivative of the potential correlator becomes infinite at the origin ($l_{c}$). The latter point sets the scale where simple perturbation theory breaks down as a consequence of the competition between many metastable states. We show that under physically well defined circumstances $l_{c} to negative values does not take place.Comment: RevTeX, 3 page

    Non-perturbative renormalization of the KPZ growth dynamics

    Full text link
    We introduce a non-perturbative renormalization approach which identifies stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of rough surfaces. The usual limitations of real space methods to deal with anisotropic (self-affine) scaling are overcome with an indirect functional renormalization. The roughness exponent α\alpha is computed for dimensions d=1d=1 to 8 and it results to be in very good agreement with the available simulations. No evidence is found for an upper critical dimension. We discuss how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    Quantized Scaling of Growing Surfaces

    Full text link
    The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In particular, height correlations should satisfy an operator product expansion and, unlike the correlations in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on the roughness exponent χ\chi and the dynamic exponent zz. Hence the exact values χ=2/5,z=8/5\chi = 2/5, z = 8/5 for two-dimensional and χ=2/7,z=12/7\chi = 2/7, z = 12/7 for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure

    Universality and Crossover of Directed Polymers and Growing Surfaces

    Full text link
    We study KPZ surfaces on Euclidean lattices and directed polymers on hierarchical lattices subject to different distributions of disorder, showing that universality holds, at odds with recent results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward the universal values of the exponents and verify that the exponent governing such crossover is universal too. In the limit of a 1+epsilon dimensional system we obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let

    Controlling surface statistical properties using bias voltage: Atomic force microscopy and stochastic analysis

    Full text link
    The effect of bias voltages on the statistical properties of rough surfaces has been studied using atomic force microscopy technique and its stochastic analysis. We have characterized the complexity of the height fluctuation of a rough surface by the stochastic parameters such as roughness exponent, level crossing, and drift and diffusion coefficients as a function of the applied bias voltage. It is shown that these statistical as well as microstructural parameters can also explain the macroscopic property of a surface. Furthermore, the tip convolution effect on the stochastic parameters has been examined.Comment: 8 pages, 11 figures

    Topological relaxation of entangled flux lattices: Single vs collective line dynamics

    Full text link
    A symbolic language allowing to solve statistical problems for the systems with nonabelian braid-like topology in 2+1 dimensions is developed. The approach is based on the similarity between growing braid and "heap of colored pieces". As an application, the problem of a vortex glass transition in high-T_c superconductors is re-examined on microscopic levelComment: 4 pages (revtex), 4 figure

    An Exactly Solved Model of Three Dimensional Surface Growth in the Anisotropic KPZ Regime

    Full text link
    We generalize the surface growth model of Gates and Westcott to arbitrary inclination. The exact steady growth velocity is of saddle type with principal curvatures of opposite sign. According to Wolf this implies logarithmic height correlations, which we prove by mapping the steady state of the surface to world lines of free fermions with chiral boundary conditions.Comment: 9 pages, REVTEX, epsf, 3 postscript figures, submitted to J. Stat. Phys, a wrong character is corrected in eqs. (31) and (32

    Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation

    Full text link
    We study the mode-coupling approximation for the KPZ equation in the strong coupling regime. By constructing an ansatz consistent with the asymptotic forms of the correlation and response functions we determine the upper critical dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be derived just from a mild assumption on the relative scale on which the response and correlation functions vary as z approaches 2.Comment: RevTex, 4 page

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq−2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq−1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq≃0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq≃1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic
    • …
    corecore