6,023 research outputs found

    Sub-mm counterparts to Lyman-break galaxies

    Get PDF
    We summarize the main results from our SCUBA survey of Lyman-break galaxies (LBGs) at z~3. Analysis of our sample of LBGs reveals a mean flux of S850=0.6±\pm0.2 mJy, while simple models of emission based on the UV properties predict a mean flux about twice as large. Known populations of LBGs are expected to contribute flux to the weak sub-mm source portion of the far-IR background, but are not likely to comprise the bright source (S850>5 mJy) end of the SCUBA-detected source count. The detection of the LBG, Westphal-MM8, at 1.9 mJy suggests that deeper observations of individual LBGs in our sample could uncover detections at similar levels, consistent with our UV-based predictions. By the same token, many sub-mm selected sources with S850<2 mJy could be LBGs. The data are also consistent with the FarIR/β\beta relation holding at z=3.Comment: 6 pages, 1 figure, contributed talk at UMass/INAOE Conference ``Deep Millimeter Surveys'

    Hamiltonian Formulation of Open WZW Strings

    Get PDF
    Using a Hamiltonian approach, we construct the classical and quantum theory of open WZW strings on a strip. (These are the strings which end on WZW branes.) The development involves non-abelian generalized Dirichlet images in an essential way. At the classical level, we find a new non-commutative geometry in which the equal-time coordinate brackets are non-zero at the world-sheet boundary, and the result is an intrinsically non-abelian effect which vanishes in the abelian limit. Using the classical theory as a guide to the quantum theory, we also find the operator algebra and the analogue of the Knizhnik-Zamolodchikov equations for the the conformal field theory of open WZW strings.Comment: 34 pages. Added an equation in Appendix C; some typos corrected. Footnote b changed. Version to appear on IJMP

    1E 1547.0-5408: a radio-emitting magnetar with a rotation period of 2 seconds

    Full text link
    The variable X-ray source 1E 1547.0-5408 was identified by Gelfand & Gaensler (2007) as a likely magnetar in G327.24-0.13, an apparent supernova remnant. No X-ray pulsations have been detected from it. Using the Parkes radio telescope, we discovered pulsations with period P = 2.069 s. Using the Australia Telescope Compact Array, we localized these to 1E 1547.0-5408. We measure dP/dt = (2.318+-0.005)e-11, which for a magnetic dipole rotating in vacuo gives a surface field strength of 2.2e14 G, a characteristic age of 1.4 kyr, and a spin-down luminosity of 1.0e35 ergs/s. Together with its X-ray characteristics, these rotational parameters of 1E 1547.0-5408 prove that it is a magnetar, only the second known to emit radio waves. The distance is ~9 kpc, derived from the dispersion measure of 830 pc/cc. The pulse profile at a frequency of 1.4 GHz is extremely broad and asymmetric due to multipath propagation in the ISM, as a result of which only approximately 75% of the total flux at 1.4 GHz is pulsed. At higher frequencies the profile is more symmetric and has FWHM = 0.12P. Unlike in normal radio pulsars, but in common with the other known radio-emitting magnetar, XTE J1810-197, the spectrum over 1.4-6.6 GHz is flat or rising, and we observe large, sudden changes in the pulse shape. In a contemporaneous Swift X-ray observation, 1E 1547.0-5408 was detected with record high flux, f_X(1-8 keV) ~ 5e-12 ergs/cm^2/s, 16 times the historic minimum. The pulsar was undetected in archival radio observations from 1998, implying a flux < 0.2 times the present level. Together with the transient behavior of XTE J1810-197, these results suggest that radio emission is triggered by X-ray outbursts of usually quiescent magnetars.Comment: Accepted for publication in ApJ Letter

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale

    Self-Interaction and Gauge Invariance

    Full text link
    A simple unified closed form derivation of the non-linearities of the Einstein, Yang-Mills and spinless (e.g., chiral) meson systems is given. For the first two, the non-linearities are required by locality and consistency; in all cases, they are determined by the conserved currents associated with the initial (linear) gauge invariance of the first kind. Use of first-order formalism leads uniformly to a simple cubic self-interaction.Comment: Missing last reference added. 9 pages, This article, the first paper in Gen. Rel. Grav. [1 (1970) 9], is now somewhat inaccessible; the present posting is the original version, with a few subsequent references included. Updates update

    Supergrassmannian and large N limit of quantum field theory with bosons and fermions

    Get PDF
    We study a large N_{c} limit of a two-dimensional Yang-Mills theory coupled to bosons and fermions in the fundamental representation. Extending an approach due to Rajeev we show that the limiting theory can be described as a classical Hamiltonian system whose phase space is an infinite-dimensional supergrassmannian. The linear approximation to the equations of motion and the constraint yields the 't Hooft equations for the mesonic spectrum. Two other approximation schemes to the exact equations are discussed.Comment: 24 pages, Latex; v.3 appendix added, typos corrected, to appear in JM

    Digital Correlation of Ion and Optical Microscopic Images: Application to the Study of Thyroglobulin Chemical Modification

    Get PDF
    A method has been developed in order to digitally correlate ion and optical microscopic images of the same sample areas. Serial cross-sections of human thyroid tissue were analyzed by secondary ion mass microscopy and by light microscopy. The resulting chemical and immunochemical map images were superimposed and correlated by means of a two-pass registration algorithm which allows to correct for geometrical distortions introduced by the ion microscope. Results are presented for the study of thyroglobulin chemical modification in pathological thyroid tissue that demonstrates heterogeneous molecular activity

    Probabilistic Algorithmic Knowledge

    Full text link
    The framework of algorithmic knowledge assumes that agents use deterministic knowledge algorithms to compute the facts they explicitly know. We extend the framework to allow for randomized knowledge algorithms. We then characterize the information provided by a randomized knowledge algorithm when its answers have some probability of being incorrect. We formalize this information in terms of evidence; a randomized knowledge algorithm returning ``Yes'' to a query about a fact \phi provides evidence for \phi being true. Finally, we discuss the extent to which this evidence can be used as a basis for decisions.Comment: 26 pages. A preliminary version appeared in Proc. 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK'03
    corecore