192 research outputs found

    Design optimization of a multi-mission helicopter configuration

    Get PDF
    The MH-60S helicopter program is currently in the development stages of incorporating provisions for the Airborne Mine Countermeasures (AMCM) Mission and the Armed Helicopter Mission. The integration of these mission provisions represents a departure from the initial design goals of the MH-60S as solely a combat support helicopter. This aircraft will ultimately be expected to execute in excess of 18 different missions in place of seven existing aircraft rather than just serving as a replacement for the H-46 helicopter. Common to any aircraft program is the issue of weight growth. Weight growth has been cited as a major risk on this program in light of the fact that there will be provisions for both major mission areas in the final (FY 07) aircraft configuration. As a result of not anticipating specific design impacts associated with the requirement to perform a wide range of missions, the aircraft will not meet the requirements set forth in the Operational Requirements Document. The fact that a single aircraft will be taking the place of several aircraft that were implicitly designed for specific missions serves to further increase the gap between the requirements and the realized, as-designed performance. The specific weight issue can be further clarified by a discussion of weight growth over time and a study of how each mission area will add weight. Incident to this discussion is a comparison of aircraft performance versus the requirements and the associated shortfalls in range, time on station, and combat radius. There are many areas where weight can be shed. Weight reduction and performance enhancements have become unfunded program requirements, resulting in detailed analysis and considerations for postproduction changes to the aircraft. In this thesis, background and causal factors for the weight/performance issue will be analyzed. Candidates for weight reduction and performance enhancements that yield the greatest performance increase will be proposed

    Designing MPAs for food security in open-access fisheries

    Get PDF
    Food security remains a principal challenge in the developing tropics where communities rely heavily on marine-based protein. While some improvements in fisheries management have been made in these regions, a large fraction of coastal fisheries remain unmanaged, mismanaged, or use only crude input controls. These quasi-open-access conditions often lead to severe overfishing, depleted stocks, and compromised food security. A possible fishery management approach in these institution-poor settings is to implement fully protected marine protected areas (MPAs). Although the primary push for MPAs has been to solve the conservation problems that arise from mismanagement, MPAs can also benefit fisheries beyond their borders. The literature has not completely characterized how to design MPAs under diverse ecological and economic conditions when food security is the objective. We integrated four key biological and economic variables (i.e., fish population growth rate, fish mobility, fish price, and fishing cost) as well as an important aspect of reserve design (MPA size) into a general model and determined their combined influence on food security when MPAs are implemented in an open-access setting. We explicitly modeled open-access conditions that account for the behavioral response of fishers to the MPA; this approach is distinct from much of the literature that focuses on assumptions of “scorched earth” (i.e., severe over-fishing), optimized management, or an arbitrarily defined fishing mortality outside the MPA’s boundaries. We found that the MPA size that optimizes catch depends strongly on economic variables. Large MPAs optimize catch for species heavily harvested for their high value and/or low harvesting cost, while small MPAs or no closure are best for species lightly harvested for their low value and high harvesting cost. Contrary to previous theoretical expectations, both high and low mobility species are expected to experience conservation benefits from protection, although, as shown previously, greater conservation benefits are expected for low mobility species. Food security benefits from MPAs can be obtained from species of any mobility. Results deliver both qualitative insights and quantitative guidance for designing MPAs for food security in open-access fisheries

    Resolved Spectroscopy of the Narrow-Line Region in NGC 1068. II. Physical Conditions Near the NGC 1068 ``Hot-Spot''

    Get PDF
    The physical conditions near the optical continuum peak (``hot spot'') in the inner narrow line region (NLR) of the Seyfert 2 galaxy, NGC 1068. Spectra were taken with HST/STIS through the 0.1X52 arcsec slit, covering the full STIS 1200 to 10000 Angstrom waveband, and are from a region that includes the hot spot, extending 0.2, or ~ 14 pc (for H= 75 km/sec/Mpc). Perhaps the most striking feature of these spectra is the presence of strong coronal emission lines, including [S XII] 7611 which has hitherto only been identified in spectra of the solar corona. There is an apparent correlation between ionization energy and velocity of the emission lines with respect to the systemic velocity of the host galaxy, with the coronal lines blueshifted, most other high excitation lines near systemic, and some of the low ionization lines redshifted. From the results of our modeling, we find that the emission-line gas consists of three principal components: 1) one in which most of the strong emission-lines, such as [O III] 5007, [Ne V] 3426, C IV 1550, arise, 2) a more tenuous, highly ionized component, which is the source of the coronal-line emission, and 3) a component, which is not co-planar with the other two, in which the low ionization and neutral lines, such as [N II] 6548 and [O I] 6300, are formed. The first two components are directly ionized by the EUV-Xray continuum emitted by the central source, while the low ionization gas is ionized by a combination of highly absorbed continuum radiation and a small fraction of unabsorbed continuum scattered by free electrons associated with the hot spot. The combination of covering factor and Thomson optical depth of the high ionization components is insufficient to scatter the observed fraction of continuum radiation into our line-of-sight.Comment: 42 pages, Latex, includes 5 figures (postscript), to appear in the Astrophysical Journa

    Biological Effects Within No-Take Marine Reserves: A global Synthesis

    Get PDF
    The study and implementation of no-take marine reserves have increased rapidly over the past decade, providing ample data on the biological effects of reserve protection for a wide range of geographic locations and organisms. The plethora of new studies affords the opportunity to reevaluate previous findings and address formerly unanswered questions with extensive data syntheses. Our results show, on average, positive effects of reserve protection on the biomass, numerical density, species richness, and size of organisms within their boundaries which are remarkably similar to those of past syntheses despite a near doubling of data. New analyses indicate that (1) these results do not appear to be an artifact of reserves being sited in better locations; (2) results do not appear to be driven by displaced fishing effort outside of reserves; (3) contrary to often-made assertions, reserves have similar if not greater positive effects in temperate settings, at least for reef ecosystems; (4) even small reserves can produce significant biological responses irrespective of latitude, although more data are needed to test whether reserve effects scale with reserve size; and (5) effects of reserves vary for different taxonomic groups and for taxa with various characteristics, and not all species increase in response to reserve protection. There is considerable variation in the responses documented across all the reserves in our data set—variability which cannot be entirely explained by which species were studied. We suggest that reserve characteristics and context, particularly the intensity of fishing outside the reserve and inside the reserve before implementation, play key roles in determining the direction and magnitude of the reserve response. However, despite considerable variability, positive responses are far more common than no differences or negative responses, validating the potential for well designed and enforced reserves to serve as globally important conservation and management tools

    Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    Full text link
    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16×\times16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7^{\circ} FHWM Gaussian-shaped beams with <<1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 ×\times 1017^{-17} W/Hz\sqrt{\mathrm{Hz}}, consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201

    A broadband x-ray study of the Geminga pulsar with NuSTAR and XMM-Newton

    Get PDF
    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the NuSTAR observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power-law, but instead exhibit spectral hardening above ~5 keV. We find two spectral models fit the data well: (1) a blackbody (kT1 ~ 42 eV) with a broken power-law (Gamma1 ~ 2.0, Gamma2 ~ 1.4 and Ebreak ~ 3.4 keV), and (2) two blackbody components (kT1 ~ 44 eV and kT2 ~ 195 eV) with a power-law component (Gamma ~ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ~ 0.01 - 1 keV. While strong phase variation of the power-law index is present below ~5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Gamma ~ 1.3 emerges above ~5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power-law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.Comment: Accepted to Ap

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914
    corecore