546 research outputs found

    The effect of constitutive representations and structural constituents of ligaments on knee joint mechanics

    Get PDF
    Abstract Ligaments provide stability to the human knee joint and play an essential role in restraining motion during daily activities. Compression-tension nonlinearity is a well-known characteristic of ligaments. Moreover, simpler material representations without this feature might give reasonable results because ligaments are primarily in tension during loading. However, the biomechanical role of different constitutive representations and their fibril-reinforced poroelastic properties is unknown. A numerical knee model which considers geometric and material nonlinearities of meniscus and cartilages was applied. Five different constitutive models for the ligaments (spring, elastic, hyperelastic, porohyperelastic, and fibril-reinforced porohyperelastic (FRPHE)) were implemented. Knee joint forces for the models with elastic, hyperelastic and porohyperelastic properties showed similar behavior throughout the stance, while the model with FRPHE properties exhibited lower joint forces during the last 50% of the stance phase. The model with ligaments as springs produced the lowest joint forces at this same stance phase. The results also showed that the fibril network contributed substantially to the knee joint forces, while the nonfibrillar matrix and fluid had small effects. Our results indicate that simpler material models of ligaments with similar properties in compression and tension can be used when the loading is directed primarily along the ligament axis in tension

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Workshop to identify critical windows of exposure for children's health: immune and respiratory systems work group summary.

    Get PDF
    Fetuses, infants, and juveniles (preadults) should not be considered simply "small adults" when it comes to toxicological risk. We present specific examples of developmental toxicants that are more toxic to children than to adults, focusing on effects on the immune and respiratory systems. We describe differences in both the pharmacokinetics of the developing immune and respiratory systems as well as changes in target organ sensitivities to toxicants. Differential windows of vulnerability during development are identified in the context of available animal models. We provide specific approaches to directly investigate differential windows of vulnerability. These approaches are based on fundamental developmental biology and the existence of discrete developmental processes within the immune and respiratory systems. The processes are likely to influence differential developmental susceptibility to toxicants, resulting in lifelong toxicological changes. We also provide a template for comparative research. Finally, we discuss the application of these data to risk assessment

    Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage - combined musculoskeletal modelling and finite element analysis

    Get PDF
    Knee osteoarthritis (KOA) is most common in the medial tibial compartment. We present a novel method to study the effect of gait modifications and lateral wedge insoles (LWIs) on the stresses in the medial tibial cartilage by combining musculoskeletal (MS) modelling with finite element (FE) analysis. Subject's gait was recorded in a gait laboratory, walking normally, with 5 degrees and 10 degrees LWIs, toes inward ('Toe in'), and toes outward ('Toe out wide'). A full lower extremity MRI and a detailed knee MRI were taken. Bones and most soft tissues were segmented from images, and the generic bone architecture of the MS model was morphed into the segmented bones. The output forces from the MS model were then used as an input in the FE model of the subject's knee. During stance, LWIs failed to reduce medial peak pressures apart from Insole 10 degrees during the second peak. Toe in reduced peak pressures by -11% during the first peak but increased them by 12% during the second. Toe out wide reduced peak pressures by -15% during the first and increased them by 7% during the second. The results show that the work flow can assess the effect of interventions on an individual level. In the future, this method can be applied to patients with KOA

    Magnetic field dependence of the exciton energy in a quantum disk

    Full text link
    The groundstate energy and binding energy of an exciton, confined in a^M quantum disk, are calculated as a function of an external magnetic field. The confinement potential is a hard wall of finite height. The diamagnetic shift is investigated for magnetic fields up to 40TT. Our results are applied to InyAl1yAs/AlxGa1xAsIn_{y}Al_{1-y}As/Al_{x}Ga_{1-x}As self-assembled quantum dots and very good agreement with experiments is obtained. Furthermore, we investigated the influence of the dot size on the diamagnetic shift by changing the disk radius. The exciton excited states are found as a function of the magnetic field. The relative angular momentum is not a quantum number and changes with the magnetic field strength.Comment: 10 pages, 17 figure

    Persistent Currents in Small, Imperfect Hubbard Rings

    Full text link
    We have done a study with small, imperfect Hubbard rings with exact diagonalization. The results for few-electron rings show, that the imperfection, whether localized or not, nearly always decrease, but can also \emph{increase} the persistent current, depending on the character of the imperfection and the on-site interaction. The calculations are generally in agreement with more specialized studies. In most cases the electron spin plays an important role.Comment: 6 pages, 4 figure

    The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Get PDF
    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed

    Continuous 24-h Photoplethysmogram Monitoring Enables Detection of Atrial Fibrillation

    Get PDF
    Aim: Atrial fibrillation (AF) detection is challenging because it is often asymptomatic and paroxysmal. We evaluated continuous photoplethysmogram (PPG) for signal quality and detection of AF.Methods: PPGs were recorded using a wrist-band device in 173 patients (76 AF, 97 sinus rhythm, SR) for 24 h. Simultaneously recorded 3-lead ambulatory ECG served as control. The recordings were split into 10-, 20-, 30-, and 60-min time-frames. The sensitivity, specificity, and F1-score of AF detection were evaluated for each time-frame. AF alarms were generated to simulate continuous AF monitoring. Sensitivities, specificities, and positive predictive values (PPVs) of the alarms were evaluated. User experiences of PPG and ECG recordings were assessed. The study was registered in the Clinical Trials database (NCT03507335).Results: The quality of PPG signal was better during night-time than in daytime (67.3 +/- 22.4% vs. 30.5 +/- 19.4%, p < 0.001). The 30-min time-frame yielded the highest F1-score (0.9536), identifying AF correctly in 72/76 AF patients (sensitivity 94.7%), only 3/97 SR patients receiving a false AF diagnosis (specificity 96.9%). The sensitivity and PPV of the simulated AF alarms were 78.2 and 97.2% at night, and 49.3 and 97.0% during the daytime. 82% of patients were willing to use the device at home.Conclusion: PPG wrist-band provided reliable AF identification both during daytime and night-time. The PPG data's quality was better at night. The positive user experience suggests that wearable PPG devices could be feasible for continuous rhythm monitoring.Peer reviewe
    corecore