14 research outputs found

    Virtual plants in machine automation research and development

    Get PDF
    Computational product development has become the mainstream methodology in modern product development. The same trend has been visible also in research, where computational methods have gained popularity beside the traditional approach relying on theory and experimentations. The objective of this project task was to study and demonstrate a realistic approach for an industrial case to reuse existing mechanical design CAD model as the starting point and the template for mechanical system simulation using multibody system simulation, and to use this MBS model as a virtual test plant for automation and control system testing. In the report, the role of system modelling and simulation in the product process is first dis-cussed and some selected technologies, such as Modelica simulation language and Functional Mock-up Interface specification, are introduced. Then different possible implementations approaches for a test environment of the control and automation system of a multi-technical system are discussed. The latter part of report focuses on describing the selected approach for a demonstration system and its implementation. The demonstration showed that, at least for the selected case, modelling, simulation and post-processing of a multi-technical simulation system is relatively straightforward and fast with the selected tools. The demonstration gives some understanding of the process for implementing one relatively small multi-technical system but does not give realistic feedback about the challenges in industrial-scale process for virtual prototyping of large and complex systems and related data exchange and data management

    Aktiivinen magneettilaakeri vaihtoreluktanssimoottorina

    Get PDF
    The goal of this work was to research the similarities between active magnetic bearings and switched reluctance motor and particularly research the chances for converting magnetic bearing into switched reluctance motor. In addition, ways to cope with the widely reported problems the motor type has were studied. The test environment consisted of test rig, previously used for testing control methods for magnetic bearing. In addition to this, MATLAB Simulink simulation models were built to help the designing of the test setup. The test setup had two alternative controllers, an original magnetic bearing controller, modified to work as a motor controller and a new CompactRIO-based controller that was used for comparing different speed control and commutation methods. New rotor designs were engineered to work with the prototype motor that used unmodified magnetic bearing stator. This setup was tested for obtaining the output torque and maximum speed of the motor together with the accuracy to follow set values. Test results of simulations and test setup were inside the error margins, showing the use of simulations beneficial in design process of this type of a motor. The tests revealed differences between the control methods, suggesting using the advanced angle controller and adjustable commutation angles.Työn tavoitteena oli tutkia yhteneväisyyksiä aktiivimagneettilaakerien ja vaihtoreluktanssimoottorin välillä. Tutkimus keskittyi erityisesti arvioimaan mahdollisuuksia muuntaa magneettilaakeri vaihtoreluktanssimoottoriksi. Lisäksi tutkittiin keinoja ratkaista ongelmia, joita tämän tyyppisessä sähkömoottorissa on raportoitu olevan. Testiympäristö koostui roottorikoelaitteesta, jota on aikaisemmin käytetty magneettilaakerin säätöjärjestelmän tutkimuksessa. Lisäksi rakennettiin MATLAB Simulink simulointimalli, jota käytettiin moottorin säätöjärjestelmän suunnittelun apuna. Testilaitteessa oli kaksi vaihtoehtoista säätöjärjestelmää; alkuperäinen magneettilaakerin ohjain muokattuna toimimaan moottorin ohjaimena sekä uusi CompactRIO -järjestelmään perustuva säätöjärjestelmä. Jälkimmäistä käytettiin erilaisten nopeus- ja kommutointitapojen vertailuun keskenään. Prototyyppimoottorin staattori oli sama, jota käytettiin magneettilaakerin kanssa. Roottori suunniteltiin sopimaan juuri tähän käyttötarkoitukseen. Tätä koelaitetta testattiin vääntömomentin ja maksiminopeuden selvittämiseksi. Lisäksi suoritettiin testejä, joissa tutkittiin kykyä seurata nopeuden asetusarvoa. Simuloimalla saadut tulokset olivat hyvin lähellä koelaitteella saatuja tuloksia osoittaen simuloinnin käytön olevan hyödyllistä tämän tyyppisen moottorin suunnittelussa. Säätömenetelmät suoriutuivat vaihtelevalla menestyksellä testeistä. Suositeltava säätömenetelmä oli edistyskulman säädin, joka käytti hyväkseen säädettäviä kommutointikulmia

    Pneumatic positioning

    No full text

    Hybrid city bus design evaluation using system level simulations

    No full text

    Electric City Bus Energy Flow Model and Its Validation by Dynamometer Test

    No full text
    Julkaisun kokoteksti on luettavissa vain Aalto-tunnuksilla.Please note that access to the fulltext is limited to Aalto staff and students.Battery electric city bus model has been created and the simulation results compared against the measured results from the full scale city bus developed for heavy vehicle research. The model utilizes multi-physics modelling approach with multiple-domains from friction-tyre and transmission model toelectrical drive and a simplified battery model. The modelled and measured motor torque, current and voltages in the battery and inverter and the bus speed were compared under a driving cycle based on a local bus line. The simulated results were in good agreement with the experimental measured results; theerror between the simulated and measured energy consumption was 1.4 %. The measured average energy consumption was 0.581 kWh/km while the simulation estimated 0.589 kWh/km

    Electric City Bus Energy Flow Model and Its Validation by Dynamometer Test

    No full text
    Julkaisun kokoteksti on luettavissa vain Aalto-tunnuksilla.Please note that access to the fulltext is limited to Aalto staff and students.Battery electric city bus model has been created and the simulation results compared against the measured results from the full scale city bus developed for heavy vehicle research. The model utilizes multi-physics modelling approach with multiple-domains from friction-tyre and transmission model toelectrical drive and a simplified battery model. The modelled and measured motor torque, current and voltages in the battery and inverter and the bus speed were compared under a driving cycle based on a local bus line. The simulated results were in good agreement with the experimental measured results; theerror between the simulated and measured energy consumption was 1.4 %. The measured average energy consumption was 0.581 kWh/km while the simulation estimated 0.589 kWh/km

    Electric City Bus Energy Flow Model and Its Validation by Dynamometer Test

    No full text
    Julkaisun kokoteksti on luettavissa vain Aalto-tunnuksilla.Please note that access to the fulltext is limited to Aalto staff and students.Battery electric city bus model has been created and the simulation results compared against the measured results from the full scale city bus developed for heavy vehicle research. The model utilizes multi-physics modelling approach with multiple-domains from friction-tyre and transmission model toelectrical drive and a simplified battery model. The modelled and measured motor torque, current and voltages in the battery and inverter and the bus speed were compared under a driving cycle based on a local bus line. The simulated results were in good agreement with the experimental measured results; theerror between the simulated and measured energy consumption was 1.4 %. The measured average energy consumption was 0.581 kWh/km while the simulation estimated 0.589 kWh/km
    corecore