47 research outputs found

    Measurements of Differential Reflectivity in Snowstorms and Warm Season Stratiform Systems

    Get PDF
    The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to +3 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of −13°C, and category B, which is typified by small reflectivity (from −10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.United States. Federal Aviation Administration (Air Force Contract FA8721-05-C-0002

    Evaluation of post-fermentation heating times and temperatures for controlling Shiga toxin-producing Escherichia coli cells in a non-dried, pepperoni-type sausage

    Get PDF
    Coarse ground meat was mixed with non-meat ingredients and starter culture (Pediococcus acidilactici) and then inoculated with an 8-strain cocktail of Shiga toxinproducing Escherichia coli (ca. 7.0 log CFU/g). Batter was fine ground, stuffed into fibrous casings, and fermented at 35.6°C and ca. 85% RH to a final target pH of ca. pH 4.6 or ca. pH 5.0. After fermentation, the pepperoni- like sausage were heated to target internal temperatures of 37.8°, 43.3°, 48.9°, and 54.4°C and held for 0.5 to 12.5 h. Regardless of the heating temperature, the endpoint pH in products fermented to a target pH of pH 4.6 and pH 5.0 was pH 4.56±0.13 (range of pH 4.20 to pH 4.86) and pH 4.96±0.12 (range of pH 4.70 to pH 5.21), respectively. Fermentation alone delivered ca. a 0.3- to 1.2-log CFU/g reduction in pathogen numbers. Fermentation to ca. pH 4.6 or ca. pH 5.0 followed by post-fermentation heating to 37.8° to 54.4°C and holding for 0.5 to 12.5 h generated total reductions of ca. 2.0 to 6.7 log CFU/g

    Pulmonary Vaccination as a Novel Treatment for Lung Fibrosis

    Get PDF
    Pulmonary fibrosis is an untreatable, uniformly fatal disease of unclear etiology that is the result of unremitting chronic inflammation. Recent studies have implicated bone marrow derived fibrocytes and M2 macrophages as playing key roles in propagating fibrosis. While the disease process is characterized by the accumulation of lymphocytes in the lung parenchyma and alveolar space, their role remains unclear. In this report we definitively demonstrate the ability of T cells to regulate lung inflammation leading to fibrosis. Specifically we demonstrate the ability of intranasal vaccinia vaccination to inhibit M2 macrophage generation and fibrocyte recruitment and hence the accumulation of collagen and death due to pulmonary failure. Mechanistically, we demonstrate the ability of lung Th1 cells to prevent fibrosis as vaccinia failed to prevent disease in Rag−/− mice or in mice in which the T cells lacked IFN-γ. Furthermore, vaccination 3 months prior to the initiation of fibrosis was able to mitigate the disease. Our findings clearly demonstrate the role of T cells in regulating pulmonary fibrosis as well as suggest that vaccinia-induced immunotherapy in the lung may prove to be a novel treatment approach to this otherwise fatal disease

    “In Sickness and in Health”? Disclosures of Genetic Risks in Dating

    Get PDF
    Individuals who have, or are at risk for, various genetic disorders face many challenges concerning disclosures of genetic information in dating situations. We conducted a qualitative interview study of 64 individuals confronting Huntington's disease, breast cancer, or Alpha‐1 antitrypsin deficiency, examining what issues these individuals encountered, and how they viewed and addressed these—including issues of understandings, privacy, and disclosures of genetic information to various groups (e.g., family members). Incidental to the primary research questions addressed, participants also often described a series of dilemmas in dating situations that they and/or family members, friends, and fellow patients faced of whether to date, and if so, whether, what, how, why, and when to disclose their genetic risk or illness. At times, these individuals feared and experienced rejection, and hence delayed, avoided, or opposed disclosure, or disclosed indirectly or inadvertently. These data are reported in this paper and highlight the importance of patients, their loved ones, genetic counselors, and other health care providers being aware of these issues, and appreciating the complex factors involved, which can affect patients’ coping and social support. This paper, the first to explore several key aspects of disclosures of genetic information in dating, thus suggests needs for public and professional education, and future research in this area
    corecore