324 research outputs found

    Chronicles of Oklahoma

    Get PDF
    Article chronicles how the Cherokees became slave holders and their attitudes towards African-Americans during the Antebellum Era

    Threshold Effect In Mg-doped Lithium Niobate

    Get PDF
    Optical absorption spectra were obtained after reducing (i.e., vacuum annealing) a series of LiNbO3 crystals grown from melts having various Mg concentrations and Li/Nb ratios. A band peaking at 500 nm, and assigned to oxygen vacancies containing two electrons, was the only absorption present in one set of crystals following reduction. In contrast, two overlapping bands peaking near 1200 and 760 nm were present in the other set of crystals immediately after the reduction. The 1200-nm band is assigned to a previously unreported electron trap and the 760-nm band to oxygen vacancies containing only one electron. These data are interpreted in terms of a threshold level for Mg doping; however, the threshold Mg doping level is not a constant but depends on the ratio of Mg ions to Li vacancies

    Ultrafast Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping

    Get PDF
    Magnetic resonance (MR) phase-velocity mapping (PVM) is routinely being used clinically to measure blood flow velocity. Conventional nonsegmented PVM is accurate but relatively slow (3–5 min per measurement). Ultrafast k-space segmented PVM offers much shorter acquisitions (on the order of seconds instead of minutes). The aim of this study was to evaluate the accuracy of segmented PVM in quantifying flow from through-plane velocity measurements. Experiments were performed using four straight tubes (inner diameter of 5.6–26.2 mm), under a variety of steady (1.7–200 ml/s) and pulsatile (6–90 ml/cycle) flow conditions. Two different segmented PVM schemes were tested, one with five k-space lines per segment and one with nine lines per segment. Results showed that both segmented sequences provided very accurate flow quantification (errorsflow conditions, even under turbulent flow conditions. This agreement was confirmed via regression analysis. Further statistical analysis comparing the flow data from the segmented PVM techniques with (i) the data from the nonsegmented technique and (ii) the true flow values showed no significant difference (all p values≫0.05). Preliminary flow measurements in the ascending aorta of two human subjects using the nonsegmented sequence and the segmented sequence with nine lines per segment showed very close agreement. The results of this study suggest that ultrafast PVM has great potential to measure blood velocity and quantify blood flow clinically. © 2002 Biomedical Engineering Society

    Ultrafast Flow Quantification With Segmented K-Space Magnetic Resonance Phase Velocity Mapping

    Get PDF
    Magnetic resonance (MR) phase-velocity mapping (PVM) is routinely being used clinically to measure blood flow velocity. Conventional nonsegmented PVM is accurate but relatively slow (3–5 min per measurement). Ultrafast k-space segmented PVM offers much shorter acquisitions (on the order of seconds instead of minutes). The aim of this study was to evaluate the accuracy of segmented PVM in quantifying flow from through-plane velocity measurements. Experiments were performed using four straight tubes (inner diameter of 5.6–26.2 mm), under a variety of steady (1.7–200 ml/s) and pulsatile (6–90 ml/cycle) flow conditions. Two different segmented PVM schemes were tested, one with five k-space lines per segment and one with nine lines per segment. Results showed that both segmented sequences provided very accurate flow quantification (errorsflow conditions, even under turbulent flow conditions. This agreement was confirmed via regression analysis. Further statistical analysis comparing the flow data from the segmented PVM techniques with (i) the data from the nonsegmented technique and (ii) the true flow values showed no significant difference (all p values≫0.05). Preliminary flow measurements in the ascending aorta of two human subjects using the nonsegmented sequence and the segmented sequence with nine lines per segment showed very close agreement. The results of this study suggest that ultrafast PVM has great potential to measure blood velocity and quantify blood flow clinically. © 2002 Biomedical Engineering Society

    Accurate Quantification of Steady and Pulsatile Flow With Segmented K-Space Magnetic Resonance Velocimetry

    Get PDF
    Conventional non-segmented magnetic resonance phase velocity mapping (MRPVM) is an accurate but relatively slow velocimetric technique. Therefore, the aim of this study was to evaluate the accuracy of the much faster segmented k-space MRPVM in quantifying flow. The axial velocity was measured in four straight tubes (inner diameter: 5.6–26.2 mm), using a segmented MRPVM sequence with seven lines of k-space per segment. The flow rate and flow volume were accurately quantified (errorssteady (r2=0.99) and pulsatile flow (r2=0.98), respectively. The measured velocity profiles and flow rates from the segmented sequence agreed with those from the non-segmented (p\u3e0.05). Changing the slice thickness or the field of view did not affect the accuracy of the measurements. The results of this study suggest that fast, segmented MRPVM can be used for accurate flow quantification

    Accurate Quantification of Steady and Pulsatile Flow With Segmented K-Space Magnetic Resonance Velocimetry

    Get PDF
    Conventional non-segmented magnetic resonance phase velocity mapping (MRPVM) is an accurate but relatively slow velocimetric technique. Therefore, the aim of this study was to evaluate the accuracy of the much faster segmented k-space MRPVM in quantifying flow. The axial velocity was measured in four straight tubes (inner diameter: 5.6–26.2 mm), using a segmented MRPVM sequence with seven lines of k-space per segment. The flow rate and flow volume were accurately quantified (errorssteady (r2=0.99) and pulsatile flow (r2=0.98), respectively. The measured velocity profiles and flow rates from the segmented sequence agreed with those from the non-segmented (p\u3e0.05). Changing the slice thickness or the field of view did not affect the accuracy of the measurements. The results of this study suggest that fast, segmented MRPVM can be used for accurate flow quantification

    Clinical Blood Flow Quantification with Segmented k-Space Magnetic Resonance Phase Velocity Mapping

    Get PDF
    To evaluate the accuracy of segmented k-space magnetic resonance phase velocity mapping (PVM) in quantifying aortic blood flow from through-plane velocity measurements. Two segmented PVM schemes were evaluated, one with seven lines per segment (seg-7) and one with nine lines per segment (seg-9), in twenty patients with cardiovascular disease. A non-segmented (non-seg) PVM acquisition was also performed to provide the reference data. There was agreement between the aortic flow curves acquired with segmented and non-segmented PVM. The calculated systolic and total flow volume per cycle from the seg-7 and the seg-9 scans correlated and agreed with the flow volumes from the non-seg scans (differences \u3c 5%). Sign tests showed that there were no statistically significant differences (P-values \u3c 0.05) between the segmented and the non-segmented PVM measurements. Seg-9, which was the fastest among the three sequences, provided adequate spatial and temporal resolution (\u3e 10 phases per cycle)

    Sn Vacancies in Photorefractive Sn\u3csub\u3e2\u3c/sub\u3eP\u3csub\u3e2\u3c/sub\u3eS\u3csub\u3e6\u3c/sub\u3e Crystals: An Electron Paramagnetic Resonance Study of an Optically Active Hole Trap

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy (V−Sn) in single crystals of Sn2P2S6 (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized (V2−Sn) with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K with 633 nm laser light. The resulting EPR spectrum has g-matrix principal values of 2.0079, 2.0231, and 1.9717. There are resolved hyperfine interactions with two P neighbors and one Sn neighbor. The isotropic portions of these hyperfine matrices are 167 and 79 MHz for the two 31P neighbors and 8504 MHz for the one Sn neighbor (this latter value is the average for 117Sn and 119Sn). These V−Sn vacancies are shallow acceptors with the hole occupying a diffuse wave function that overlaps the neighboring Sn2+ ion and (P2S6)4− anionic unit. Using a general-order kinetics approach, an analysis of isothermal decay curves of the V−Sn EPR spectrum in the 107–115 K region gives an activation energy of 283 meV

    Sulfur Vacancies in Photorefractive Sn\u3csub\u3e2\u3c/sub\u3eP\u3csub\u3e2\u3c/sub\u3eS\u3csub\u3e6\u3c/sub\u3e Crystals

    Get PDF
    A photoinduced electron paramagnetic resonance (EPR) spectrum in single crystals of Sn2P2S6 (SPS) is assigned to an electron trapped at a sulfur vacancy. These vacancies are unintentionally present in undoped SPS crystals and are expected to play an important role in the photorefractive behavior of the material. Nonparamagnetic sulfur vacancies are formed during the initial growth of the crystal. Subsequent illumination below 100 K with 442 nm laser light easily converts these vacancies to EPR-active defects. The resulting S = 1/2 spectrum shows well-resolved and nearly isotropic hyperfine interactions with two P ions and two Sn ions. Partially resolved interactions with four additional neighboring Sn ions are also observed. Principal values of the g matrix are 1.9700, 1.8946, and 1.9006, with the corresponding principal axes along the a, b, and c directions in the crystal. The isotropic parts of the two primary 31P hyperfine interactions are 19.5 and 32.6 MHz and the isotropic parts of the two primary Sn hyperfine interactions are 860 and 1320 MHz (the latter values are each an average for 117Sn and 119Sn). These hyperfine results suggest that singly ionized sulfur vacancies have a diffuse wave function in SPS crystals, and thus are shallow donors. Before illumination, sulfur vacancies are in the doubly ionized charge state because of compensation by unidentified acceptors. They then trap an electron during illumination. The EPR spectrum from the sulfur vacancy is destroyed when a crystal is heated above 120 K in the dark and reappears when the crystal is illuminated again at low temperature

    PyElph - a software tool for gel images analysis and phylogenetics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents PyElph, a software tool which automatically extracts data from gel images, computes the molecular weights of the analyzed molecules or fragments, compares DNA patterns which result from experiments with molecular genetic markers and, also, generates phylogenetic trees computed by five clustering methods, using the information extracted from the analyzed gel image. The software can be successfully used for population genetics, phylogenetics, taxonomic studies and other applications which require gel image analysis. Researchers and students working in molecular biology and genetics would benefit greatly from the proposed software because it is free, open source, easy to use, has a friendly Graphical User Interface and does not depend on specific image acquisition devices like other commercial programs with similar functionalities do.</p> <p>Results</p> <p>PyElph software tool is entirely implemented in Python which is a very popular programming language among the bioinformatics community. It provides a very friendly Graphical User Interface which was designed in six steps that gradually lead to the results. The user is guided through the following steps: image loading and preparation, lane detection, band detection, molecular weights computation based on a molecular weight marker, band matching and finally, the computation and visualization of phylogenetic trees. A strong point of the software is the visualization component for the processed data. The Graphical User Interface provides operations for image manipulation and highlights lanes, bands and band matching in the analyzed gel image. All the data and images generated in each step can be saved. The software has been tested on several DNA patterns obtained from experiments with different genetic markers. Examples of genetic markers which can be analyzed using PyElph are RFLP (Restriction Fragment Length Polymorphism), AFLP (Amplified Fragment Length Polymorphism), RAPD (Random Amplification of Polymorphic DNA) and STR (Short Tandem Repeat). The similarity between the DNA sequences is computed and used to generate phylogenetic trees which are very useful for population genetics studies and taxonomic classification.</p> <p>Conclusions</p> <p>PyElph decreases the effort and time spent processing data from gel images by providing an automatic step-by-step gel image analysis system with a friendly Graphical User Interface. The proposed free software tool is suitable for researchers and students which do not have access to expensive commercial software and image acquisition devices.</p
    • …
    corecore