10 research outputs found
Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform.
Background The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated.Methods Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib.Results Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P2* (R=0.87, P2* (Ptrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114âmin-1). Cyclophosphamide elicited a significant reduction in both tumour burden (P1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay.Conclusions Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials
The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide
Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis