8,281 research outputs found

    Gauge-Fermion Unification and Flavour Symmetry

    Full text link
    After we study the 6-dimensional N=(1,1){\cal N} = (1, 1) supersymmetry breaking and RR symmetry breaking on M4×T2/ZnM^4\times T^2/Z_n, we construct two N=(1,1){\cal N} = (1, 1) supersymmetric E6E_6 models on M4×T2/Z3M^4\times T^2/Z_3 where E6E_6 is broken down to SO(10)×U(1)XSO(10)\times U(1)_X by orbifold projection. In Model I, three families of the Standard Model fermions arise from the zero modes of bulk vector multiplet, and the RR symmetry U(1)FI×SU(2)4−U(1)_F^{I} \times SU(2)_{{\bf 4}_-} can be considered as flavour symmetry. This may explain why there are three families of fermions in the nature. In Model II, the first two families come from the zero modes of bulk vector multiplet, and the flavour symmetry is similar. In these models, the anomalies can be cancelled, and we have very good fits to the SM fermion masses and mixings. We also comment on the N=(1,1){\cal N}=(1, 1) supersymmetric E6E_6 models on M4×T2/Z4M^4\times T^2/Z_4 and M4×T2/Z6M^4\times T^2/Z_6, SU(9) models on M4×T2/Z3M^4\times T^2/Z_3, and SU(8) models on T2T^2 orbifolds.Comment: Latex, 33 pages, minor change

    Inflationary Cosmology with Five Dimensional SO(10)

    Full text link
    We discuss inflationary cosmology in a five dimensional SO(10) model compactified on S1/(Z2×Z2â€Č)S^1/(Z_2\times Z_2'), which yields SU(3)c×SU(2)L×U(1)Y×U(1)XSU(3)_c\times SU(2)_L\times U(1)_Y\times U(1)_X below the compactification scale. The gauge symmetry SU(5)×U(1)XSU(5)\times U(1)_X is preserved on one of the fixed points, while ``flipped'' SU(5)â€Č×U(1)Xâ€ČSU(5)'\times U(1)'_X is on the other fixed point. Inflation is associated with U(1)XU(1)_X breaking, and is implemented through FF-term scalar potentials on the two fixed points. A brane-localized Einstein-Hilbert term allows both branes to have positive tensions during inflation. The scale of U(1)XU(1)_X breaking is fixed from ÎŽT/T\delta T/T measurements to be around 101610^{16} GeV, and the scalar spectral index n=0.98−0.99n=0.98-0.99. The inflaton field decays into right-handed neutrinos whose subsequent out of equilibrium decay yield the observed baryon asymmetry via leptogenesis.Comment: 1+19 pages, improved discussion of 5D cosmology, Version to appear in PR

    Neutrino Democracy, Fermion Mass Hierarchies And Proton Decay From 5D SU(5)

    Get PDF
    The explanation of various observed phenomena such as large angle neutrino oscillations, hierarchies of charged fermion masses and CKM mixings, and apparent baryon number conservation may have a common origin. We show how this could occur in 5D SUSY SU(5) supplemented by a U(1){\cal U}(1) flavor symmetry and additional matter supermultiplets called 'copies'. In addition, the proton decays into p→KÎœp\to K\nu , with an estimated lifetime of order 1033−103610^{33}-10^{36} yrs. Other decay channels include KeKe and KÎŒK\mu with comparable rates. We also expect that BR(Ό→eÎł)∌(\mu \to e\gamma)\sim BR(Ï„â†’ÎŒÎł)(\tau \to \mu \gamma)

    Model Building with Gauge-Yukawa Unification

    Full text link
    In supersymmetric theories with extra dimensions, the Higgs and matter fields can be part of the gauge multiplet, so that the Yukawa interactions can arise from the gauge interactions. This leads to the possibility of gauge-Yukawa coupling unification, g_i=y_f, in the effective four dimensional theory after the initial gauge symmetry and the supersymmetry are broken upon orbifold compactification. We consider gauge-Yukawa unified models based on a variety of four dimensional symmetries, including SO(10), SU(5), Pati-Salam symmetry, trinification, and the Standard Model. Only in the case of Pati-Salam and the Standard Model symmetry, we do obtain gauge-Yukawa unification. Partial gauge-Yukawa unification is also briefly discussed.Comment: 23 page

    Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12

    Full text link
    The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the compounds were found to comprise linear-chains at inter-chain distance of approximately 10 A. The parent chain compound (x = 0), however, shows less anisotropic magnetic behavior above 2 K, although it is of substantially antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain system. A magnetic cusp gradually appears at about 100 K in T vs chi with the Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold electrically insulating in the composition range.Comment: To be published in PR

    SU(4)_c x SU(2)_L x SU(2)_R model from 5D SUSY SU(4)_c x SU(4)_{L+R}

    Full text link
    We investigate supersymmetric SU(4)c×SU(4)L+RSU(4)_c\times SU(4)_{L+R} theory in 5 dimensions whose compactification on a S(1)/Z2S^{(1)}/Z_2 orbifold yields N=1 supersymmetric SU(4)c×SU(2)L×SU(2)RSU(4)_c\times SU(2)_L\times SU(2)_R supplemented by a \tl{U}(1) gauge symmetry. We discuss how the ÎŒ\mu problem is resolved, a realistic Yukawa sector achieved, and a stable proton realized. Neutrino masses and oscillations are also briefly discussed.Comment: Version to appear in Physical Review

    SUSY GUT Model Building

    Full text link
    I discuss an evolution of SUSY GUT model building, starting with the construction of 4d GUTs, to orbifold GUTs and finally to orbifold GUTs within the heterotic string. This evolution is an attempt to obtain realistic string models, perhaps relevant for the LHC. This review is in memory of the sudden loss of Julius Wess, a leader in the field, who will be sorely missed.Comment: 24 pages, 14 figures, lectures given at PiTP 2008, Institute for Advanced Study, Princeton, to be published in the European Physical Journal

    Transfer RNA-derived small RNAs in the cancer transcriptome

    Get PDF
    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing

    The strong coupling, unification, and recent data

    Get PDF
    The prediction of the strong coupling assuming (supersymmetric) coupling constant unification is reexamined. We find, using the new electroweak data, αs(MZ)≈0.129±0.010\alpha_{s}(M_{Z}) \approx 0.129 \pm 0.010. The implications of the large αs\alpha_{s} value are discussed. The role played by the ZZ beauty width is stressed. It is also emphasized that high-energy (but not low-energy) corrections could significantly diminish the prediction. However, unless higher-dimension operators are assumed to be suppressed, at present one cannot place strong constraints on the super-heavy spectrum. Non-leading electroweak threshold corrections are also discussed.Comment: 12 pages, LaTex + RevTex, uuencoded postscript file (including 13 figures) is attached. Also available at ftp://dept.physics.upenn.edu/pub/Ni

    Dynamical relaxation of the CP phases in next-to-minimal supersymmetry

    Get PDF
    After promoting the phases of the soft masses to dynamical fields corresponding to Goldstone bosons of spontaneously broken global symmetries in the supersymmetry breaking sector, the next-to-minimal supersymmetric model is found to solve the Ό\mu problem and the strong CP problem simultaneously with an invisible axion. The domain wall problem persists in the form of axionic domain formation. Relaxation dynamics of the physical CP-violating phases is determined only by the short-distance physics and their relaxation values are not necessarily close to the CP-conserving points. Having observable supersymmetric CP violation and avoiding the axionic domain walls both require nonminimal flavor structures.Comment: 13 pp, 3 figs, published versio
    • 

    corecore