2,947 research outputs found

    Aiding clinicians through summarization of perinatal data

    Get PDF
    posterExploratory analysis has focused on developing summarized views of monitor-captured perinatal data to support adherence to established clinical protocols. In addition to facilitating rapid access to significant clinical trends and reducing subjective interpretation of monitor-captured data, combining data summaries with traditional monitor review may assist in the anticipation of complications

    The BTC40 Survey for Quasars at 4.8 < z < 6

    Full text link
    The BTC40 Survey for high-redshift quasars is a multicolor search using images obtained with the Big Throughput Camera (BTC) on the CTIO 4-m telescope in V, I, and z filters to search for quasars at redshifts of 4.8 < z < 6. The survey covers 40 sq. deg. in B, V, & I and 36 sq. deg. in z. Limiting magnitudes (3 sigma) reach to V = 24.6, I = 22.9 and z = 22.9. We used the (V-I) vs. (I-z) two-color diagram to select high-redshift quasar candidates from the objects classified as point sources in the imaging data. Follow-up spectroscopy with the AAT and CTIO 4-m telescopes of candidates having I < 21.5 has yielded two quasars with redshifts of z = 4.6 and z = 4.8 as well as four emission line galaxies with z = 0.6. Fainter candidates have been identified down to I = 22 for future spectroscopy on 8-m class telescopes.Comment: 27 pages, 8 figures; Accepted for publication in the Astronomical Journa

    Automated detection of medication administration errors in neonatal intensive care

    Get PDF
    AbstractObjectiveTo improve neonatal patient safety through automated detection of medication administration errors (MAEs) in high alert medications including narcotics, vasoactive medication, intravenous fluids, parenteral nutrition, and insulin using the electronic health record (EHR); to evaluate rates of MAEs in neonatal care; and to compare the performance of computerized algorithms to traditional incident reporting for error detection.MethodsWe developed novel computerized algorithms to identify MAEs within the EHR of all neonatal patients treated in a level four neonatal intensive care unit (NICU) in 2011 and 2012. We evaluated the rates and types of MAEs identified by the automated algorithms and compared their performance to incident reporting. Performance was evaluated by physician chart review.ResultsIn the combined 2011 and 2012 NICU data sets, the automated algorithms identified MAEs at the following rates: fentanyl, 0.4% (4 errors/1005 fentanyl administration records); morphine, 0.3% (11/4009); dobutamine, 0 (0/10); and milrinone, 0.3% (5/1925). We found higher MAE rates for other vasoactive medications including: dopamine, 11.6% (5/43); epinephrine, 10.0% (289/2890); and vasopressin, 12.8% (54/421). Fluid administration error rates were similar: intravenous fluids, 3.2% (273/8567); parenteral nutrition, 3.2% (649/20124); and lipid administration, 1.3% (203/15227). We also found 13 insulin administration errors with a resulting rate of 2.9% (13/456). MAE rates were higher for medications that were adjusted frequently and fluids administered concurrently. The algorithms identified many previously unidentified errors, demonstrating significantly better sensitivity (82% vs. 5%) and precision (70% vs. 50%) than incident reporting for error recognition.ConclusionsAutomated detection of medication administration errors through the EHR is feasible and performs better than currently used incident reporting systems. Automated algorithms may be useful for real-time error identification and mitigation

    A Review of Target Mass Corrections

    Full text link
    With recent advances in the precision of inclusive lepton--nuclear scattering experiments, it has become apparent that comparable improvements are needed in the accuracy of the theoretical analysis tools. In particular, when extracting parton distribution functions in the large-x region, it is crucial to correct the data for effects associated with the nonzero mass of the target. We present here a comprehensive review of these target mass corrections (TMC) to structure functions data, summarizing the relevant formulas for TMCs in electromagnetic and weak processes. We include a full analysis of both hadronic and partonic masses, and trace how these effects appear in the operator product expansion and the factorized parton model formalism, as well as their limitations when applied to data in the x->1 limit. We evaluate the numerical effects of TMCs on various structure functions, and compare fits to data with and without these corrections.Comment: 41 pages, 13 figures; minor updates to match published versio

    Are superflares on solar analogues caused by extra-solar planets?

    Get PDF
    Stellar flares with 102−107{10^2-10^7} times more energy than the largest solar flare have been detected from 9 normal F and G main sequence stars (Schaefer, King & Deliyannis 1999). These superflares have durations of hours to days and are visible from at least x-ray to optical frequencies. The absence of world-spanning aurorae in historical records and of anomalous extinctions in the geological record indicate that our Sun likely does not suffer superflares. In seeking to explain this new phenomenon, we are struck by its similarity to large stellar flares on RS Canum Venaticorum binary systems, which are caused by magnetic reconnection events associated with the tangling of magnetic fields between the two stars. The superflare stars are certainly not of this class, although we propose a similar flare mechanism. That is, superflares are caused by magnetic reconnection between fields of the primary star and a close-in Jovian planet. Thus, by only invoking known planetary properties and reconnection scenarios, we can explain the energies, durations, and spectra of superflares, as well as explain why our Sun does not have such events.Comment: 13 pages, Accepted for publication in Ap

    A Self-Contained Subsea Platform for Acoustic Monitoring of the Environment Around Marine Renewable Energy Devices-Field Deployments at Wave and Tidal Energy Sites in Orkney, Scotland

    Get PDF
    The drive towards sustainable energy has seen rapid development of marine renewable energy devices (MREDs). The NERC/Defra collaboration FLOw, Water column and Benthic ECology 4-D (FLOWBEC-4D) is investigating the environmental and ecological effects of installing and operating wave and tidal energy devices. The FLOWBEC sonar platform combines several instruments to record information at a range of physical and multitrophic levels for durations of two weeks to capture an entire spring-neap tidal cycle. An upward-facing multifrequency Simrad EK60 echosounder is synchronized with an upward-facing Imagenex Delta T multibeam sonar. An acoustic Doppler velocimeter (ADV) provides local current measurements and a fluorometer measures chlorophyll (as a proxy for phytoplankton) and turbidity. The platform is self-contained, facilitating rapid deployment and recovery in high-energy sites and flexibility in gathering baseline data. Five 2-week deployments were completed in 2012 and 2013 at wave and tidal energy sites, both in the presence and absence of renewable energy structures at the European Marine Energy Centre (EMEC), Orkney, U.K. Algorithms for target tracking have been designed and compared with concurrent, shore-based seabird observations used to ground truth the acoustic data. The depth preference and interactions of birds, fish schools and marine mammals with MREDs can be tracked to assess whether individual animals face collision risks with tidal stream turbines, and how animals generally interact with MREDs. These results can be used to guide marine spatial planning, device design, licensing and operation, as different device types are tested, as individual devices are scaled up to arrays, and as new sites are considered
    • 

    corecore