15,557 research outputs found
An Uncertain Destination: On the Development of Conflict Management Systems in U.S. Corporations
[Excerpt] Our survey and field research have led us to some tentative conclusions that do not conform to the conventional wisdom of our field. From its inception, ADR has been controversial. On the one hand, ADR has been embraced by a coterie of champions who have always believed that its advantages over litigation were so obvious and compelling it would only be a matter of time before ADR was adopted universally. These champions have also been missionaries, proselytizing their faith in all quarters and making numerous converts. Like all true believers, ADR champions cannot understand why others have not yet gotten the faith. On the other hand, there has always been a group of ADR opponents who believe ADR undercuts our system of justice and must be resisted. ADR champions believe in the inevitability of ADR, while ADR opponents believe the movement to ADR can be stopped and even reversed. On balance, we believe in ADR\u27s merits and share many of its champions\u27 convictions. Our research — which is based on the analytical model we present in this paper — suggests, however, that there is nothing inevitable about the ultimate triumph of ADR
Magnetostrictive vibration generation system
A shaker with a Terfenol-D rod actuator includes a mass coupled to both ends of the rod through a spring seat, a spring seat/adjuster and a spring washer. The actuator is mounted inside a cylindrical coil, which in turn is mounted inside a cylindrical permanent magnet, which in turn is mounted inside a cylindrical housing. An electrical drive system provides a predetermined excitation signal to the coil to cause the rod to vibrate under the influence of the magnetic field generated by the coil. One embodiment features a vibrating mass on one end of the rod. An implantable shaker includes a seal to leak-proof the shaker and a coating of Biomerâ„¢. The implantable shaker can be implanted in an animal to test tissue response to certain vibrations. According to another embodiment, the Terfenol-D rod actuator is held in place on one end with a pre-stress adjusting screw, which is threaded into the end of the housing and fixed in place with a jam nut. In all embodiments, a spring base is seated on one end of the rod actuator and forms an annular coaxial air gap between it and a spring seat, so that the air gap remains constant when the rod actuator vibrates and the spring base moves coaxially with respect to the spring seat
Structural Properties of the Caenorhabditis elegans Neuronal Network
Despite recent interest in reconstructing neuronal networks, complete wiring
diagrams on the level of individual synapses remain scarce and the insights
into function they can provide remain unclear. Even for Caenorhabditis elegans,
whose neuronal network is relatively small and stereotypical from animal to
animal, published wiring diagrams are neither accurate nor complete and
self-consistent. Using materials from White et al. and new electron micrographs
we assemble whole, self-consistent gap junction and chemical synapse networks
of hermaphrodite C. elegans. We propose a method to visualize the wiring
diagram, which reflects network signal flow. We calculate statistical and
topological properties of the network, such as degree distributions, synaptic
multiplicities, and small-world properties, that help in understanding network
signal propagation. We identify neurons that may play central roles in
information processing and network motifs that could serve as functional
modules of the network. We explore propagation of neuronal activity in response
to sensory or artificial stimulation using linear systems theory and find
several activity patterns that could serve as substrates of previously
described behaviors. Finally, we analyze the interaction between the gap
junction and the chemical synapse networks. Since several statistical
properties of the C. elegans network, such as multiplicity and motif
distributions are similar to those found in mammalian neocortex, they likely
point to general principles of neuronal networks. The wiring diagram reported
here can help in understanding the mechanistic basis of behavior by generating
predictions about future experiments involving genetic perturbations, laser
ablations, or monitoring propagation of neuronal activity in response to
stimulation
A strong form of the Quantitative Isoperimetric inequality
We give a refinement of the quantitative isoperimetric inequality. We prove
that the isoperimetric gap controls not only the Fraenkel asymmetry but also
the oscillation of the boundary
Decision Support Systems for Inquiring Organizations
For many years, organizations have been faced with increasing amounts of information but have not been able to adequately use that information in a way that allows for organizational growth. The ability of an organization to learn is likely to be the only competitive advantage left in an economy where technology can be a significant leveling factor. Integrating decision support systems and inquiring systems will produce support for a learning organization that is capable of complex problem formulation and solution. There are many similarities between inquiring systems and decision support systems. This paper suggests that decision support will be enhanced by integrating the theory of decision support in a comprehensive inquiring system that is capable of adapting to changes in the business environment. Development of such a system will ensure that decisionmakers and managers can focus on the task of guiding an organization to its ultimate success rather than expending energy sorting through information to make accurate and timely decisions
Anomalous Hall Effect in three ferromagnets: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30
The Hall resistivity (Rho_xy), resistivity (Rho_xx), and magnetization of
three metallic ferromagnets are investigated as a function of magnetic field
and temperature. The three ferromagnets, EuFe4Sb12 (Tc = 84 K), Yb14MnSb11 (Tc
= 53 K), and Eu8Ga16Ge30 (Tc = 36 K) are Zintl compounds with carrier
concentrations between 1 x 10^21 cm^-3 and 3.5 x 10^21 cm^-3. The relative
decrease in Rho_xx below Tc [Rho_xx(Tc)/Rho_xx(2 K)] is 28, 6.5, and 1.3 for
EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively. The low carrier
concentrations coupled with low magnetic anisotropies allow a relatively clean
separation between the anomalous (Rho_'xy), and normal contributions to the
measured Hall resistivity. For each compound the anomalous contribution in the
zero field limit is fit to alpha Rho_xx + sigma_xy rho_xx^2 for temperatures T
< Tc. The anomalous Hall conductivity, sigma_xy, is -220 +- 5 (Ohm^-1 cm^-1),
-14.7 +- 1 (Ohm^-1 cm^-1), and 28 +- 3 (Ohm^-1 cm^-1) for EuFe4Sb12,
Yb14MnSb11, and Eu8Ga16Ge30 respectively and is independent of temperature for
T < Tc if the change in spontaneous magnetization (order parameter) with
temperature is taken into account. These data are consistent with recent
theories of the anomalous Hall effect that suggest that even for stochiometric
ferromagnetic crystals, such as those studied in this article, the intrinsic
Hall conductivity is finite at T = 0, and is a ground state property that can
be calculated from the electronic structure.Comment: 22 pages, 13 figures Submitted to PR
Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound
Increases in the spatial scale and intensity of activities that produce marine anthropogenic sound highlight the importance of understanding the impacts and effects of sound on threatened species such as marine turtles. Marine turtles detect and behaviorally respond to low-frequency sounds, however few studies have directly examined their behavioral responses to specific types or intensities of anthropogenic or natural sounds. Recent advances in the development of bio-logging tools, which combine acoustic and fine-scale movement measurements, have allowed for evaluations of animal responses to sound. Here, we describe these tools and present a case study demonstrating the potential application of a newly developed technology (ROTAG, Loggerhead Instruments, Inc.) to examine behavioral responses of freely swimming marine turtles to sound. The ROTAG incorporates a three-axis accelerometer, gyroscope, and magnetometer to record the turtle\u27s pitch, roll, and heading; a pressure sensor to record turtle depth; a hydrophone to record the turtle\u27s received underwater acoustic sound field; a temperature gauge; and two VHF radio telemetry transmitters and antennas for tag and turtle tracking. Tags can be programmed to automatically release via a timed corrodible link several hours or days after deployment. We describe an example of the data collected with these tags and present a case study of a successful ROTAG deployment on a juvenile green turtle (Chelonia mydas) in the Paranaguá Estuary Complex, Brazil. The tag was deployed for 221 min, during which several vessels passed closely (\u3c2 km) by the turtle. The concurrent movement and acoustic data collected by the ROTAG were examined during these times to determine if the turtle responded to these anthropogenic sound sources. While fine-scale behavioral responses were not apparent (second-by-second), the turtle did appear to perform dives during which it remained still on or near the sea floor during several of the vessel passes. This case study provides proof of concept that ROTAGs can successfully be applied to free-ranging marine turtles to examine their behavioral response to sound. Finally, we discuss the broad applications that these tools have to study the fine-scale behaviors of marine turtles and highlight their use to aid in marine turtle conservation and management
Time-Series Ensemble Photometry and the Search for Variable Stars in the Open Cluster M11
This work presents the first large-scale photometric variability survey of
the intermediate age (~200 Myr) open cluster M11. Thirteen nights of data over
two observing seasons were analyzed (using crowded field and ensemble
photometry techniques) to obtain high relative precision photometry. In this
study we focus on the detection of candidate member variable stars for
follow-up studies. A total of 39 variable stars were detected and can be
categorized as follows: 1 irregular (probably pulsating) variable, 6 delta
Scuti variables, 14 detached eclipsing binary systems, 17 W UMa variables, and
1 unidentified/candidate variable. While previous proper motion studies allow
for cluster membership determination for the brightest stars, we find that
membership determination is significantly hampered below V=15,R=15.5 by the
large population of field stars overlapping the cluster MS. Of the brightest
detected variables that have a high likelihood of cluster membership, we find
five systems where further work could help constrain theoretical stellar
models, including one potential W UMa member of this young cluster.Comment: 38 pages, 13 figures, accepted for December 2005 AJ, high-resolution
version available upon reques
- …