2,078 research outputs found

    Fatigue and fracture: Overview

    Get PDF
    A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes

    Life prediction modeling based on strainrange partitioning

    Get PDF
    Strainrange partitioning (SRP) is an integrated low-cycle-fatigue life predicting system. It was created specifically for calculating cyclic crack initiation life under severe high-temperature fatigue conditions. The key feature of the SRP system is its recognition of the interacting mechanisms of cyclic inelastic deformation that govern cyclic life at high temperatures. The SRP system bridges the gap between the mechanistic level of understanding that breeds new and better materials and the phenomenological level wherein workable engineering life prediction methods are in great demand. The system was recently expanded to address engineering fatigue problems in the low-strain, long-life, nominally elastic regime. This breakthrough, along with other advances in material behavior and testing technology, has permitted the system to also encompass low-strain thermomechanical loading conditions. Other important refinements of the originally proposed method include procedures for dealing with life-reducing effects of multiaxial loading, ratcheting, mean stresses, nonrepetitive (cumulative loading) loading, and environmental and long-time exposure. Procedure were also developed for partitioning creep and plastic strain and for estimating strainrange versus life relations from tensile and creep rupture properties. Each of the important engineering features of the SRP system are discussed and examples shown of how they help toward predicting high-temperature fatigue life under practical, although complex, loading conditions

    Thermal fatigue durability for advanced propulsion materials

    Get PDF
    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems

    Life prediction and constitutive behavior

    Get PDF
    One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades

    Cyclic creep rupture behavior of three high temperature alloys

    Get PDF
    Tensile stress and tensile time-to-rupture relation determined from cyclic creep rupture tests on high temperature titanium alloy, cobalt alloy, and stainless stee

    Coded Cooperative Data Exchange for a Secret Key

    Full text link
    We consider a coded cooperative data exchange problem with the goal of generating a secret key. Specifically, we investigate the number of public transmissions required for a set of clients to agree on a secret key with probability one, subject to the constraint that it remains private from an eavesdropper. Although the problems are closely related, we prove that secret key generation with fewest number of linear transmissions is NP-hard, while it is known that the analogous problem in traditional cooperative data exchange can be solved in polynomial time. In doing this, we completely characterize the best possible performance of linear coding schemes, and also prove that linear codes can be strictly suboptimal. Finally, we extend the single-key results to characterize the minimum number of public transmissions required to generate a desired integer number of statistically independent secret keys.Comment: Full version of a paper that appeared at ISIT 2014. 19 pages, 2 figure

    Engine cyclic durability by analysis and material testing

    Get PDF
    The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor liner; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods

    Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    Get PDF
    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test
    corecore