697 research outputs found
Extending Continuum Models for Atom Probe Simulation
This work describes extensions to existing level-set algorithms developed for
application within the field of Atom Probe Tomography (APT). We present a new
simulation tool for the simulation of 3D tomographic volumes, using advanced
level set methods. By combining narrow-band, B-Tree and particle-tracing
approaches from level-set methods, we demonstrate a practical tool for
simulating shape changes to APT samples under applied electrostatic fields, in
three dimensions. This work builds upon our previous studies by allowing for
non-axially symmetric solutions, with minimal loss in computational speed,
whilst retaining numerical accuracy
HB 1: FORUM Act
The Act prevents the creation of free speech zones at public institutions of higher education including Georgia universities, colleges, and technical colleges. Additionally, the Act allows universities to create reasonable, content- and viewpoint-neutral, and narrowly tailored time, place, and manner restrictions on any expressive activity on campus
DF-Fit : A robust algorithm for detection of crystallographic information in Atom Probe Tomography data
We report on a new algorithm for detection of crystallographic information in
3D, as retained in Atom Probe Tomography (APT), with improved robustness and
signal detection performance. The algorithm is underpinned by 1D distribution
functions, as per existing algorithms, but eliminates an unnecessary parameter
as compared to current methods. By examining traditional distribution functions
in an automated fashion in real space, rather than using Fourier transform
approaches, we utilise an error metric based upon the expected value for a
spatially random distribution for detecting crystallography. We show cases
where the metric is able to successfully obtain orientation information, and
show that it can function with high levels of additive and displacive
background noise. We additionally compare this metric to Fourier transform
methods, showing fewer artefacts when examining simulated datasets. An
extension of the approach is used to aid the automatic detection of
high-quality data regions within an entire dataset, albeit with a large
increase in computational cost. This extension is demonstrated on acquired
Aluminium and Tungsten APT datasets, and shown to be able to discern regions of
the data which have relatively improved spatial data quality. Finally, this
program has been made available for use in other laboratories undertaking their
own analyses
Large-scale atom probe tomography data mining: methods and application to inform hydrogen behavior
A large number of atom probe tomography (APT) datasets from past experiments were collected into a database to conduct statistical analyses. An effective way of handling the data is shown, and a study on hydrogen is conducted to illustrate the usefulness of this approach. We propose to handle a large collection of APT spectra as a point cloud and use a city block distance-based metric to measure dissimilarity between spectra. This enables quick and automated searching for spectra by similarity. Since spectra from APT experiments on similar materials are similar, the point cloud of spectra contains clusters. Analysis of these clusters of spectra in this point cloud allows us to infer the sample materials. The behavior of contaminant hydrogen is analyzed and correlated with voltage, electric field, and sample base material. Across several materials, the H2+ /H+ ratio is found to decrease with increasing field, likely an indication of postionization of H2+ ions. The absolute amounts of H2+ and H+ are found to frequently increase throughout APT experiments
A gas-phase reaction cell for modern Atom Probe systems
In this work, we demonstrate a new system for the examination of gas
interactions with surfaces via Atom Probe Tomography. This system provides the
capability to examine the surface and subsurface interactions of gases with a
wide range of specimens, as well as a selection of input gas types. This system
has been primarily developed to aid the investigation of hydrogen interactions
with metallurgical samples, to better understand the phenomenon of hydrogen
embrittlement. In its current form, it is able to operate at pressures from
10^-6 to 1000 mbar (abs), can operate using a variety of gasses, and is
equipped with heating and cryogenic quenching capabilities. We use this system
to examine the interaction of hydrogen with Pd, as well as the interaction of
water vapour and oxygen in Mg samples
Efficacy, Safety, and Timing of Anticoagulant Thromboprophylaxis for the Prevention of Venous Thromboembolism in Patients With Acute Spinal Cord Injury: A Systematic Review
Study Design: Systematic review. Objectives: The objective of this study was to answer 5 key questions: What is the comparative effectiveness and safety of (1a) anticoagulant thromboprophylaxis compared to no prophylaxis, placebo, or another anticoagulant strategy for preventing deep vein thrombosis (DVT) and pulmonary embolism (PE) after acute spinal cord injury (SCI)? (1b) Mechanical prophylaxis strategies alone or in combination with other strategies for preventing DVT and PE after acute SCI? (1c) Prophylactic inferior vena cava filter insertion alone or in combination with other strategies for preventing DVT and PE after acute SCI? (2) What is the optimal timing to initiate and/or discontinue anticoagulant, mechanical, and/or prophylactic inferior vena cava filter following acute SCI? (3) What is the cost-effectiveness of these treatment options? Methods: A systematic literature search was conducted to identify studies published through February 28, 2015. We sought randomized controlled trials evaluating efficacy and safety of antithrombotic strategies. Strength of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Results: Nine studies satisfied inclusion criteria. We found a trend toward lower risk of DVT in patients treated with enoxaparin. There were no significant differences in rates of DVT, PE, bleeding, and mortality between patients treated with different types of low-molecular-weight heparin or between low-molecular-weight heparin and unfractionated heparin. Combined anticoagulant and mechanical prophylaxis initiated within 72 hours of SCI resulted in lower risk of DVT than treatment commenced after 72 hours of injury. Conclusion: Prophylactic treatments can be used to lower the risk of venous thromboembolic events in patients with acute SCI, without significant increase in risk of bleeding and mortality and should be initiated within 72 hours. © 2017, © The Author(s) 2017
Distribution of \u3ci\u3eBaylisascaris procyonis\u3c/i\u3e in Raccoons (\u3ci\u3eProcyon lotor\u3c/i\u3e) in Florida, USA
Baylisascaris procyonis, or raccoon roundworm, is an intestinal nematode parasite of raccoons (Procyon lotor) that is important to public and wildlife health. Historically, the parasite was uncommon in the southeastern US; however, the range of B. procyonis has expanded to include Florida, US. From 2010 to 2016, we opportunistically sampled 1,030 raccoons statewide. The overall prevalence was 3.7% (95% confidence interval=2.5–4.8%) of sampled individuals, and infection intensity ranged from 1 to 48 (mean±standard deviation 9.9±4.0). We found raccoon roundworm in 9/56 (16%) counties sampled, and the percent positive ranged from 1.1% to 13.3% of specimens collected per county. Including previously published data, B. procyonis was detected in 11 Florida counties. We used logistic regression to estimate the contribution of raccoon demographic variables and the presence of the endoparasite Macracanthorhynchus ingens to B. procyonis detection in Florida. Following the model selection process we found housing density, M. ingens presence, and urbanicity to be predictive of raccoon roundworm presence. We also found substantial among-county variation. Raccoon sex and age were not useful predictors. Public health officials, wildlife rehabilitators, wildlife managers, and others should consider any Florida raccoon to be potentially infected with B. procyonis, particularly in areas where housing density is high
Simplifying Observation of Hydrogen Trapping in Atom Probe Tomography
The presence of hydrogen within the microstructure of an alloy can lead to a serious reduction of ductility known as hydrogen embrittlement. Although the exact mechanisms of this phenomenon are still subject to debate, some mitigation strategies are available. Such strategies include minimizing hydrogen ingress with surface coatings, or controlling hydrogen diffusion within via the introduction of microstructural ‘traps’, e.g. second phase precipitates. One system of interest in ferritic steels is a microstructure containing finely distributed nano-sized vanadium carbide precipitates (~10nm M4C3), which show good resistance to hydrogen environments. However, to date, there is a lack of experimental techniques to directly study the interaction between hydrogen and microstructural features, limiting researchers’ ability to design effective microstructural hydrogen traps
Microstructural evolution and transmutation in tungsten under ion and neutron irradiation
This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 °C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against FISPACT modelling. The measured Re and Os concentration was used to create alloys with equivalent concentrations of Re and Os. These alloys were exposed to self-ion irradiation to a peak dose of 1.7 dpa at 800 °C. APT showed that self-ion irradiation leads to the formation of small Os clusters, wheras under neutron irradiation large Re/Os clusters form. Voids are formed by both ion and neutron irradiation, but the voids formed by neutron irradiation are larger. By comparing the behaviour of W-1.4Re and W-1.4Re-0.1Os, suppression of Re cluster formation was observed. Irradiation hardening was measured using nanoindentation and was found to be 2.7 GPa, after neutron irradiation and 1.6 GPa and 0.6 GPa for the self-ion irradiated W-1.4Re and W-1.4Re-0.1Os. The higher hardening is attributed to the barrier strength of large voids and Re/Os clusters that are observed after neutron irradiation
Microstructural evolution and transmutation in tungsten under ion and neutron irradiation
This study aims to compare the effects of neutron and self-ion irradiation on the mechanical properties and microstructural evolution in W. Neutron irradiation at the HFR reactor to 1.67 dpa at 800 °C resulted in the formation of large Re and Os rich clusters and voids. The post-irradiation composition was measured using APT and verfified against FISPACT modelling. The measured Re and Os concentration was used to create alloys with equivalent concentrations of Re and Os. These alloys were exposed to self-ion irradiation to a peak dose of 1.7 dpa at 800 °C. APT showed that self-ion irradiation leads to the formation of small Os clusters, wheras under neutron irradiation large Re/Os clusters form. Voids are formed by both ion and neutron irradiation, but the voids formed by neutron irradiation are larger. By comparing the behaviour of W-1.4Re and W-1.4Re-0.1Os, suppression of Re cluster formation was observed. Irradiation hardening was measured using nanoindentation and was found to be 2.7 GPa, after neutron irradiation and 1.6 GPa and 0.6 GPa for the self-ion irradiated W-1.4Re and W-1.4Re-0.1Os. The higher hardening is attributed to the barrier strength of large voids and Re/Os clusters that are observed after neutron irradiation
- …