31 research outputs found

    Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets.

    Get PDF
    Breast cancer is one of the most prevalent diseases among women worldwide and is highly associated with cancer-related mortality. Of the four major molecular subtypes, HER2-positive and triple-negative breast cancer (TNBC) comprise more than 30% of all breast cancers. While the HER2-positive subtype lacks estrogen and progesterone receptors and overexpresses HER2, the TNBC subtype lacks estrogen, progesterone and HER2 receptors. Although advances in molecular biology and genetics have substantially ameliorated breast cancer disease management, targeted therapies for the treatment of estrogen-receptor negative breast cancer patients are still restricted, particularly for TNBC. On the other hand, it has been demonstrated that microRNAs, miRNAs or small non-coding RNAs that regulate gene expression are involved in diverse biological processes, including carcinogenesis. Moreover, circulating miRNAs in serum/plasma are among the most promising diagnostic/therapeutic tools as they are stable and relatively easy to quantify. Various circulating miRNAs have been identified in several human cancers including specific breast cancer subtypes. This review aims to discuss the role of circulating miRNAs as potential diagnostic and prognostic biomarkers as well as therapeutic targets for estrogen-receptor negative breast cancers, HER2+ and triple negative

    High-Risk Human Papillomaviruses and Epstein-Barr Virus in Colorectal Cancer and Their Association with Clinicopathological Status.

    Get PDF
    Colorectal cancer (CRC) is a common malignancy with a high mortality rate worldwide. It is a complex, multifactorial disease that is strongly impacted by both hereditary and environmental factors. The role of microbes (e.g., viruses) in the pathogenesis of CRC is poorly understood. In the current study, we explored the status of high-risk human papillomaviruses (HPV) and Epstein-Barr virus (EBV) in a well-defined CRC cohort using immunohistochemistry and polymerase chain reaction assays. Our data showed that high-risk HPVs were common (~80%) and EBV had a low presence (14-25%) in the CRC samples. The most common high-risk HPVs are HPV16, 31, 18, 51, 52 and 45 genotypes. The co-presence of high-risk HPV and EBV was observed in ~16% of the sample population without any significant association with the clinicopathological variables. We conclude that high-risk HPVs are very prevalent in CRC samples while EBV positivity is relatively low. The co-expression of the two viruses was observed in a minority of cases and without any correlation with the studied parameters. Further studies are necessary to confirm the clinical relevance and potential therapeutic (preventive) effects of the observations reported herein.Qatar University grants: QUHI-CMED-19/20-1 and GCC#2017-002 Q

    Epstein-Barr Virus and Human Papillomaviruses Interactions and Their Roles in the Initiation of Epithelial-Mesenchymal Transition and Cancer Progression.

    Get PDF
    Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein-Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial-mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by β-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast the initiation of EMT.This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT

    Discovery of new therapeutic targets in ovarian cancer through identifying significantly non-mutated genes

    Get PDF
    Background: Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. Methods: We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. Results: We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. Conclusion: We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.We would like to thank Weill Cornell Medicine in Qatar (WCM-Q) and the Qatar National Leadership Program (QNLP) for research support. We would also like to thank the WCM-Q Advanced Computing Division for computing time and software support. Finally, we would like to thank colleagues and reviewers for experimental support and critical discussions. This study was made possible by JSREP grant 4-011-1-003 from the Qatar National Research Fund (a member of Qatar Foundation) and the QF Leadership program. The statements made herein are solely the responsibility of the author[s]. The funders had no role in the design of the study or in the collection, analysis, and interpretation of data and in writing the manuscript.Scopu

    Elaeagnus angustifolia Plant Extract Induces Apoptosis via P53 and Signal Transducer and Activator of Transcription 3 Signaling Pathways in Triple-Negative Breast Cancer Cells

    Get PDF
    Elaeagnus angustifolia (EA) is used as an alternative medicine in the Middle East to manage numerous human diseases. We recently reported that EA flower extract inhibits cell proliferation and invasion of human oral and HER2-positive breast cancer cells. Nevertheless, the outcome of EA extract on triple-negative breast cancer (TNBC) cells has not been explored yet. We herein investigate the effect of the aqueous EA extract (100 and 200 μl/ml) on two TNBC cell lines (MDA-MB-231 and MDA-MB-436) for 48 h and explore its underlying molecular pathways. Our data revealed that EA extract suppresses cell proliferation by approximately 50% and alters cell-cycle progression of these two cancer cell lines. Additionally, EA extract induces cell apoptosis by 40–50%, accompanied by the upregulation of pro-apoptotic markers (Bax and cleaved caspase-8) and downregulation of the anti-apoptotic marker, Bcl-2. Moreover, EA extract inhibits colony formation compared to their matched control. More significantly, the molecular pathway analysis of EA-treated cells revealed that EA extract enhances p53 expression, while inhibiting the expression of total and phosphorylated Signal Transducer and Activator Of Transcription 3 (STAT3) in both cell lines, suggesting p53 and STAT3 are the main key players behind the biological events provoked by the extract in TNBC cells. Our findings implicate that EA flower extract may possess an important potential as an anticancer drug against TNBC.Grants from Qatar University: # QUST-1-CPH-2021-22, QUCP-CMED-22/23-529, and QUCG-CMED-20/21-2

    Plant Extract Inhibits Epithelial-Mesenchymal Transition and Induces Apoptosis via HER2 Inactivation and JNK Pathway in HER2-Positive Breast Cancer Cells

    Get PDF
    Elaeagnus angustifolia (EA) is a medicinal plant used for treating several human diseases in the Middle East. Meanwhile, the outcome of extract on HER2-positive breast cancer remains nascent. Thus, we herein investigated the effects of the aqueous extract obtained from the flowers of on two HER2-positive breast cancer cell lines, SKBR3 and ZR75-1. Our data revealed that extract inhibits cell proliferation and deregulates cell-cycle progression of these two cancer cell lines. extract also prevents the progression of epithelial-mesenchymal transition (EMT), an important event for cancer invasion and metastasis; this is accompanied by upregulations of E-cadherin and β-catenin, in addition to downregulations of vimentin and fascin, which are major markers of EMT. Thus, extract causes a drastic decrease in cell invasion ability of SKBR3 and ZR75-1 cancer cells. Additionally, we found that extract inhibits colony formation of both cell lines in comparison with their matched control. The molecular pathway analysis of HER2 and JNK1/2/3 of extract exposed cells revealed that it can block HER2 and JNK1/2/3 activities, which could be the major molecular pathway behind these events. Our findings implicate that extract may possess chemo-preventive effects against HER2-positive breast cancer via HER2 inactivation and specifically JNK1/2/3 signaling pathways.grants from Qatar University: # QUCP-CMED-2019-1, QUHI-CMED-19/20-1, and QUCG-CMED-20/21-2

    Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity.

    Get PDF
    Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.Qatar University: QUCG-CMED-2018\2019-3, QUSD-CMED-2018-2 and QUST-1-CMED-2019-18

    Novel nitrogen-based chalcone analogs provoke substantial apoptosis in HER2-positive human breast cancer cells via JNK and ERK1/ERK2 signaling pathways

    Get PDF
    Natural chalcones possess antitumor properties and play a role as inducers of apoptosis, antioxidants and cytotoxic compounds. We recently reported that novel nitrogen chalcone-based compounds, which were generated in our lab, have specific effects on triple-negative breast cancer cells. However, the outcome of these two new compounds on human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains nascent. Thus, we herein investigated the effects of these compounds (DK-13 and DK-14) on two HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data revealed that these compounds inhibit cell proliferation, deregulate cell-cycle progression and significantly induce cell apoptosis in both cell lines. Furthermore, the two chalcone compounds cause a significant reduction in the cell invasion ability of SKBR3 and ZR75 cancer cells. In parallel, we found that DK-13 and DK-14 inhibit colony formation of both cell lines in comparison to their matched controls. On the other hand, we noticed that these two compounds can inhibit angiogenesis in the chorioallantoic membrane model. The molecular pathway analysis of chalcone compounds exposed cells revealed that these compounds inhibit the expression of both JNK1/2/3 and ERK1/2, the major plausible molecular pathways behind these events. Our findings implicate that DK-13 and DK-14 possess effective chemotherapeutic outcomes against HER2-positive breast cancer via the ERK1/2 and JNK1/2/3 signaling pathways.Funding: This research was funded by the following Qatar University Grants: (QUCG-CPH-20/21-4), (QUCP-CMED-2019-1) and (QUHI-CMED-19/20-1).Scopu

    Human Papillomaviruses-Related Cancers: An Update on the Presence and Prevention Strategies in the Middle East and North African Regions.

    Get PDF
    The human papillomavirus (HPV) is a non-enveloped double-stranded DNA virus capable of infecting skin and mucosa epithelial cells. Commonly, HPV infection is associated with sexually transmitted diseases and is considered the leading cause of cervical cancer and other carcinomas of the anogenital tract. However, several studies reported their involvement in cancers of non-sexual regions, including colorectal, head and neck, and breast cancers. There are several studies from the Middle East and North Africa (MENA) regions on the potential association between high-risk HPVs and cancer; nevertheless, there are limited studies that address the significance of HPV vaccination as a potential guard against these cancers. In the current review, we present a comprehensive description of the current HPV-associated cancers prevalence rates in the MENA region, demonstrating their steady increase with time, especially in African regions. Moreover, we discuss the potential impact of vaccination against HPV infections and its outcome on human health in this region.Our lab is supported by grants from Qatar University: QUCP-CMED-2021-1 and QUCP-CMED-2022/23-529

    Water-Pipe Smoking Exposure Deregulates a Set of Genes Associated with Human Head and Neck Cancer Development and Prognosis.

    Get PDF
    Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient's biology and outcome. We found that WPS can induce the epithelial-mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan-Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients' survival.Qatar University, grant numbers: QUCP-CMED-2019-1, QUCG-CMED-20/21-2 & QUHI-CMED-19/20-1
    corecore