1,773 research outputs found

    Near-field spectroscopy of Dirac plasmons in Bi2Se3 ribbon arrays

    Get PDF
    Plasmons supported in the massless electron surface states of topological insulators (TIs), known as Dirac plasmons, have great potential in next generation optoelectronics. However, their inherent confinement to the surface makes the investigation of Dirac plasmons challenging. Near-field techniques provide the ideal platform to directly probe Dirac plasmons due to the sensitivity to evanescent fields at the surface. Here, we demonstrate the use of aperture near-field spectroscopy for the investigation of localized terahertz (THz) Dirac plasmon resonances in Bi2Se3 ribbon arrays with widths ranging from 10 to 40 µm. Unlike scattering THz near-field techniques, the aperture method is most sensitive to plasmons with the relevant lower-momenta corresponding to plasmon wavelengths on the scale of ∼20 µm. The combination of THz time-domain spectroscopy and aperture near-field microscopy enables sampling of localized Dirac plasmons in the near-field zone in the 0.5–2.5 THz range. We map the plasmon dispersion, which reveals a coupled plasmon–phonon polariton interaction. The near-field spectra show a higher contrast of the upper polariton branch in comparison with far-field observations. The information revealed by aperture near-field spectroscopy could deepen our understanding of the behavior of Dirac plasmons, leading to the potential development of real-world TI devices

    Long-term production of greenhouse gases from exposed continental shelves and oceanic islands during Quaternary glacial periods

    Get PDF
    The EPICA Dome C ice core in Antarctica has yielded an 800,000-year record of atmospheric carbon dioxide and methane composition from the Middle Pleistocene climatic transition to the present. In this record, there is a sharp increase in both carbon dioxide and methane immediately following the glacial maxima during the glacial periods which to date remains difficult to explain. We will present evidence to show that the exposed continental shelves and ...published_or_final_versio

    Atmospheric extinction coefficients in the Ic\mathrm{I_c} band for several major international observatories: Results from the BiSON telescopes, 1984 to 2016

    Get PDF
    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory (LCO), Chile; Observatorio del Teide, Iza\~{n}a, Tenerife, Canary Islands; the South African Astronomical Observatory (SAAO), Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the Ic\mathrm{I_c} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984 to 2016.Comment: 15 pages, 10 figures, 4 tables. Accepted by Astronomical Journal: 2017 July 2

    Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers

    Get PDF
    Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with subpicosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 μW-three orders of magnitude lower than gating powers used for conventionalPCAdetectors.We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements

    Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the Diabetic Retinopathy Screening Service for Wales: retrospective analysis

    Get PDF
    Objectives To determine the incidence of any and referable diabetic retinopathy in people with type 2 diabetes mellitus attending an annual screening service for retinopathy and whose first screening episode indicated no evidence of retinopathy

    On the Mechanism of Time--Delayed Feedback Control

    Full text link
    The Pyragas method for controlling chaos is investigated in detail from the experimental as well as theoretical point of view. We show by an analytical stability analysis that the revolution around an unstable periodic orbit governs the success of the control scheme. Our predictions concerning the transient behaviour of the control signal are confirmed by numerical simulations and an electronic circuit experiment.Comment: 4 pages, REVTeX, 4 eps-figures included Phys. Rev. Lett., in press also available at http://athene.fkp.physik.th-darmstadt.de/public/wolfram.htm

    Visualizing Spacetime Curvature via Gradient Flows I: Introduction

    Full text link
    Traditional approaches to the study of the dynamics of spacetime curvature in a very real sense hide the intricacies of the nonlinear regime. Whether it be huge formulae, or mountains of numerical data, standard methods of presentation make little use of our remarkable skill, as humans, at pattern recognition. Here we introduce a new approach to the visualization of spacetime curvature. We examine the flows associated with the gradient fields of invariants derived from the spacetime. These flows reveal a remarkably rich structure, and offer fresh insights even for well known analytical solutions to Einstein's equations. This paper serves as an overview and as an introduction to this approach.Comment: 10 pages twocolumn revtex 4-1 two figures. Final form to appear in Phys Rev

    The National Childrens Study: An Introduction and Historical Overview

    Get PDF
    The National Children’s Study (NCS) was an ambitious attempt to map children’s health and development in a large representative group of children in the United States. In this introduction, we briefly review the background of the NCS and the history of the multiple strategies that were tested to recruit women and children. Subsequent articles then detail the protocols and outcomes of 4 of the recruitment strategies. It is hoped that lessons learned from these attempts to define a study protocol that could achieve the initial aims of the NCS will inform future efforts to conceptualize and execute strategies to provide generalizable insights on the longitudinal health of our nation’s children

    Terahertz Pulse Generation from GaAs Metasurfaces

    Get PDF
    Ultrafast optical excitation of select materials gives rise to the generation of broadband terahertz (THz) pulses. This effect has enabled the field of THz time-domain spectroscopy and led to the discovery of many physical mechanisms behind THz generation. However, only a few materials possess the required properties to generate THz radiation efficiently. Optical metasurfaces can relax stringent material requirements by shifting the focus onto the engineering of local electromagnetic fields to boost THz generation. Here we demonstrate the generation of THz pulses in a 160 nm thick nanostructured GaAs metasurface. Despite the drastically reduced volume, the metasurface emits THz radiation with efficiency comparable to that of a thick GaAs crystal. We reveal that along with classical second-order volume nonlinearity, an additional mechanism contributes strongly to THz generation in the metasurface, which we attribute to surface nonlinearity. Our results lay the foundation for engineering of semiconductor metasurfaces for efficient and versatile THz radiation emitters
    • …
    corecore