59 research outputs found

    Micro-drive Array for Chronic in vivo Recording: Tetrode Assembly

    Get PDF
    The tetrode, a bundle of four electrodes, has proven to be a valuable tool for the simultaneous recording of multiple neurons in-vivo. The differential amplitude of action potential signatures over the channels of a tetrode allows for the isolation of single-unit activity from multi-unit signals. The ability to precisely control the stereotaxic location and depth of the tetrode is critical for studying coordinated neural activity across brain regions. In combination with a micro-drive array, it is possible to achieve precise placement and stable control of many tetrodes over the course of days to weeks. In this protocol, we demonstrate how to fabricate and condition tetrodes using basic tools and materials, install the tetrodes into a multi-drive tetrode array for chronic in-vivo recording in the rat, make ground wire connections to the micro-drive array, and attach a protective cone onto the micro-drive array in order to protect the tetrodes from physical contact with the environment

    Micro-drive Array for Chronic in vivo Recording: Drive Fabrication

    Get PDF
    Chronic recording of large populations of neurons is a valuable technique for studying the function of neuronal circuits in awake behaving rats. Lightweight recording devices carrying a high density array of tetrodes allow for the simultaneous monitoring of the activity of tens to hundreds of individual neurons. Here we describe a protocol for the fabrication of a micro-drive array with twenty one independently movable micro-drives. This device has been used successfully to record from hippocampal and cortical neurons in our lab. We show how to prepare a custom designed, 3-D printed plastic base that will hold the micro-drives. We demonstrate how to construct the individual micro-drives and how to assemble the complete micro-drive array. Further preparation of the drive array for surgical implantation, such as the fabrication of tetrodes, loading of tetrodes into the drive array and gold-plating, is covered in a subsequent video article

    Principles and techniques for designing precision machines

    No full text
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.Includes bibliographical references (p. 352-358).This thesis is written to advance the reader's knowledge of precision-engineering principles and their application to designing machines that achieve both sufficient precision and minimum cost. It provides the concepts and tools necessary for the engineer to create new precision machine designs. Four case studies demonstrate the principles and showcase approaches and solutions to specific problems that generally have wider applications. These come from projects at the Lawrence Livermore National Laboratory in which the author participated: the Large Optics Diamond Turning Machine, Accuracy Enhancement of High productivity Machine Tools, the National Ignition Facility, and Extreme Ultraviolet Lithography. Although broad in scope, the topics go into sufficient depth to be useful to practicing precision engineers and often fulfill more academic ambitions. The thesis begins with a chapter that presents significant principles and fundamental knowledge from the Precision Engineering literature. Following this is a chapter that presents engineering design techniques that are general and not specific to precision machines. All subsequent chapters cover specific aspects of precision machine design. The first of these is Structural Design, guidelines and analysis techniques for achieving independently stiff machine structures. The next chapter addresses dynamic stiffness by presenting several techniques for Detenninistic Damping, damping designs that can be analyzed and optimized with predictive results. Several chapters present a main thrust of the thesis, Exact-Constraint Design. A main contribution is a generalized modeling approach developed through the course of creating several unique designs. The final chapter is the primary case study of the thesis, the Conceptual Design of a Horiwnta/ Machining Center.by Layton Carter Hale.Ph.D
    • …
    corecore