2,559 research outputs found

    Exact calculation of the ground-state dynamical spin correlation function of a S=1/2 antiferromagnetic Heisenberg chain with free spinons

    Full text link
    We calculate the exact dynamical magnetic structure factor S(Q,E) in the ground state of a one-dimensional S=1/2 antiferromagnet with gapless free S=1/2 spinon excitations, the Haldane-Shastry model with inverse-square exchange, which is in the same low-energy universality class as Bethe's nearest-neighbor exchange model. Only two-spinon excited states contribute, and S(Q,E) is found to be a very simple integral over these states.Comment: 11 pages, LaTeX, RevTeX 3.0, cond-mat/930903

    Calculation of the singlet-triplet gap of the antiferromagnetic Heisenberg Model on the ladder

    Full text link
    The ground state energy and the singlet-triplet energy gap of the antiferromagnetic Heisenberg model on a ladder is investigated using a mean field theory and the density matrix renormalization group. Spin wave theory shows that the corrections to the local magnetization are infinite. This indicates that no long range order occurs in this system. A flux-phase state is used to calculate the energy gap as a function of the transverse coupling, J⊥J_\perp, in the ladder. It is found that the gap is linear in J⊥J_\perp for J⊥≫1J_\perp\gg 1 and goes to zero for J⊥→0J_\perp\to 0. The mean field theory agrees well with the numerical results.Comment: 11pages,6 figures (upon request) Revtex 3.0, Report#CRPS-94-0

    Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)

    Full text link
    We calculate the electron paramagnetic resonance (EPR) spectra of the antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different values of x and temperature T much lower than the Haldane gap (~100K). The low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all parameters determined from experiment, has been solved using DMRG. The observed EPR spectra are quantitatively reproduced by this model. The presence of end-chain S=1/2 states is clearly observed as the main peak in the spectrum and the remaining structure is completely understood.Comment: 5 pages, 4 figures include

    Adiabatic Ground-State Properties of Spin Chains with Twisted Boundary Conditions

    Full text link
    We study the Heisenberg spin chain with twisted boundary conditions, focusing on the adiabatic flow of the energy spectrum as a function of the twist angle. In terms of effective field theory for the nearest-neighbor model, we show that the period 2 (in unit 2Ď€2\pi) obtained by Sutherland and Shastry arises from irrelevant perturbations around the massless fixed point, and that this period may be rather general for one-dimensional interacting lattice models at half filling. In contrast, the period for the Haldane-Shastry spin model with 1/r21/r^2 interaction has a different and unique origin for the period, namely, it reflects fractional statistics in Haldane's sense.Comment: 6 pages, revtex, 3 figures available on request, to appear in J. Phys. Soc. Jp

    Exclusion Statistics in Conformal Field Theory Spectra

    Get PDF
    We propose a new method for investigating the exclusion statistics of quasi-particles in Conformal Field Theory (CFT) spectra. The method leads to one-particle distribution functions, which generalize the Fermi-Dirac distribution. For the simplest su(n)su(n) invariant CFTs we find a generalization of Gentile parafermions, and we obtain new distributions for the simplest ZNZ_N-invariant CFTs. In special examples, our approach reproduces distributions based on `fractional exclusion statistics' in the sense of Haldane. We comment on applications to fractional quantum Hall effect edge theories.Comment: 4 pages, 1 figure, LaTeX (uses revtex

    Spin Stiffness of Mesoscopic Quantum Antiferromagnets

    Full text link
    We study the spin stiffness of a one-dimensional quantum antiferromagnet in the whole range of system sizes LL and temperatures TT. We show that for integer and half-odd integer spin case the stiffness differs fundamentally in its LL and TT dependence, and that in the latter case the stiffness exhibits a striking dependence on the parity of the number of sites. Integer spin chains are treated in terms of the non-linear sigma model, while half-odd integer spin chains are discussed in a renormalization group approach leading to a Luttinger liquid with Aharonov-Bohm type boundary conditions.Comment: 12 pages, LaTe
    • …
    corecore