12 research outputs found

    Protocole simplifié de dépistage de Staphylococcus aureus résistant à la méticilline en réanimation

    No full text
    MONTPELLIER-BU Médecine UPM (341722108) / SudocPARIS-BIUM (751062103) / SudocMONTPELLIER-BU Médecine (341722104) / SudocSudocFranceF

    Genes Chromos Canc

    No full text
    Lobular intraepithelial neoplasia Grade 3 (LIN3) is a recently recognized variant of intraepithelial lobular neoplasia (LIN) of the breast composed of either uniform, generally small cells with massive lobular distension, pleomorphic cells, signet-ring cells, or any cell type with necrosis. In contrast to classic forms of LIN, there is no consensus on therapeutic strategies for LIN3. In part this is due to the paucity of molecular data that could assist in defining the relationship of LIN3 to classic LIN and carcinomas. In this study we have employed array comparative genomic hybridization to determine the patterns of chromosomal aberrations in nine LIN3 lesions. By comparison to array CGH data of 13 classic LIN lesions, we demonstrate that classic LIN and LIN3 share several recurrent changes, in particular gains of 1q and losses of 16q. Both aberrations are known to appear early in tumorigenesis and to be associated with good prognosis. However, apart from this overlap, there were a number of karyotypic features that were observed exclusively in LIN3. Clearly, this lesion was characterized by a significantly higher number of DNA copy number changes (9 vs. 31 on average), a considerable complexity of chromosomal rearrangements with more than 16 breakpoints in one chromosome and overlapping high copy amplifications encompassing a number of known oncogenes. Our data suggest that, at the genetic level, LIN3 represents a highly advanced lesion with considerable resemblance to carcinomas and, therefore, might represent the transition state from an intraepithelial neoplasm to breast carcinoma. © 2010 Wiley-Liss, Inc

    Chromosomal aberrations as detected by array comparative genomic hybridization in early low-grade intraepithelial neoplasias of the breast

    No full text
    AIMS: Low-grade flat ductal intraepithelial neoplasia (DIN1a, flat epithelial atypia) is one of the earliest morphologically recognizable neoplastic lesions of the breast. Frequently, it occurs concomitantly with lobular intraepithelial neoplasia (LIN). We aimed to elucidate chromosomal aberrations in these early neoplastic breast lesions with the use of array comparative genomic hybridization analysis. METHODS AND RESULTS: Laser capture microdissection of 12 archival formalin-fixed, paraffin-embedded specimens harbouring foci of both DIN1a and LIN was performed. All analysed cases of DIN1a and LIN showed chromosomal gains and losses. The aberration encountered most often was loss of 16q, noted in seven DIN1a (70% of those successfully examined) and 10 LIN (91%) cases. The next most common alteration was a gain on 1q, noted in four DIN1a (40%) and seven LIN (64%) cases. CONCLUSIONS: The results show concurrent chromosomal aberrations of 1q gains and 16q losses in several cases with coexisting LIN and DIN1a. These aberrations are known to be common in low-grade invasive (ductal and lobular) carcinomas as well as in more advanced (conventional) types of low-grade ductal intraepithelial neoplasia (DIN) (low-grade ductal carcinoma in situ). Our results raise the possibility of similar molecular-genetic pathways in coexisting LIN and low-grade flat DIN

    J. Pathol.

    No full text
    With the appearance of defect-targeted therapies, the definition of tumour protein expression profiles has gained increasing importance. Two lung carcinoma tissue microarrays, one including 75 primary adenocarcinomas (ACs) and the other comprising 67 primary squamous cell carcinomas (SQCCs), were generated in the present study. On both arrays, each tumour was represented by an average of five cores. In addition, one punch of normal lung parenchyma adjacent to each tumour was included in the array. Immunohistochemical expression of 86 proteins was evaluated and the results were analysed by non-parametric tests, hierarchical clustering, and principal component analysis. In both tumour entities, parenchyma and tumours were clearly separated by hierarchical clustering. By the same statistical approach, it was possible to distinguish ACs from SQCCs with 98% accuracy and to distinguish parenchyma adjacent to ACs from that adjacent to SQCCs with 96% accuracy. It was also possible to separate ACs into three groups that significantly differed in survival. Cathepsin E and hsp105 were identified as previously unknown predictors of survival in lung AC. In summary, this study has shown that protein profiles are feasible tools for anticipating biological behaviour. Copyright © 2004 Pathological Society of Great Britain and Ireland

    Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays.

    No full text
    With the appearance of defect-targeted therapies, the definition of tumour protein expression profiles has gained increasing importance. Two lung carcinoma tissue microarrays, one including 75 primary adenocarcinomas (ACs) and the other comprising 67 primary squamous cell carcinomas (SQCCs), were generated in the present study. On both arrays, each tumour was represented by an average of five cores. In addition, one punch of normal lung parenchyma adjacent to each tumour was included in the array. Immunohistochemical expression of 86 proteins was evaluated and the results were analysed by non-parametric tests, hierarchical clustering, and principal component analysis. In both tumour entities, parenchyma and tumours were clearly separated by hierarchical clustering. By the same statistical approach, it was possible to distinguish ACs from SQCCs with 98% accuracy and to distinguish parenchyma adjacent to ACs from that adjacent to SQCCs with 96% accuracy. It was also possible to separate ACs into three groups that significantly differed in survival. Cathepsin E and hsp105 were identified as previously unknown predictors of survival in lung AC. In summary, this study has shown that protein profiles are feasible tools for anticipating biological behaviour
    corecore