688 research outputs found

    Quantum chaos in QCD at finite temperature

    Full text link
    We study complete eigenvalue spectra of the staggered Dirac matrix in quenched QCD on a 63×46^3\times 4 lattice. In particular, we investigate the nearest-neighbor spacing distribution P(s)P(s) for various values of β\beta both in the confinement and deconfinement phase. In both phases except far into the deconfinement region, the data agree with the Wigner surmise of random matrix theory which is indicative of quantum chaos. No signs of a transition to Poisson regularity are found, and the reasons for this result are discussed.Comment: 3 pages, 6 figures (included), poster presented by R. Pullirsch at "Lattice 97", to appear in the proceeding

    Quantum chaos and QCD at finite chemical potential

    Full text link
    We investigate the distribution of the spacings of adjacent eigenvalues of the lattice Dirac operator. At zero chemical potential μ\mu, the nearest-neighbor spacing distribution P(s)P(s) follows the Wigner surmise of random matrix theory both in the confinement and in the deconfinement phase. This is indicative of quantum chaos. At nonzero chemical potential, the eigenvalues of the Dirac operator become complex. We discuss how P(s)P(s) can be defined in the complex plane. Numerical results from an SU(3) simulation with staggered fermions are compared with predictions from non-hermitian random matrix theory, and agreement with the Ginibre ensemble is found for μ0.7\mu\approx 0.7.Comment: LATTICE98(hightemp), 3 pages, 10 figure

    The zeros of the QCD partition function

    Get PDF
    We establish a relationship between the zeros of the partition function in the complex mass plane and the spectral properties of the Dirac operator in QCD. This relation is derived within the context of chiral Random Matrix Theory and applies to QCD when chiral symmetry is spontaneously broken. Further, we introduce and examine the concept of normal modes in chiral spectra. Using this formalism we study the consequences of a finite Thouless energy for the zeros of the partition function. This leads to the demonstration that certain features of the QCD partition function are universal.Comment: 13 page

    Non-Commutativity of the Zero Chemical Potential Limit and the Thermodynamic Limit in Finite Density Systems

    Full text link
    Monte Carlo simulations of finite density systems are often plagued by the complex action problem. We point out that there exists certain non-commutativity in the zero chemical potential limit and the thermodynamic limit when one tries to study such systems by reweighting techniques. This is demonstrated by explicit calculations in a Random Matrix Theory, which is thought to be a simple qualitative model for finite density QCD. The factorization method allows us to understand how the non-commutativity, which appears at the intermediate steps, cancels in the end results for physical observables.Comment: 7 pages, 9 figure

    Erythema dyschromicum perstans showing resolution in an adult

    Get PDF

    Non-Hermitian Random Matrix Theory and Lattice QCD with Chemical Potential

    Get PDF
    In quantum chromodynamics (QCD) at nonzero chemical potential, the eigenvalues of the Dirac operator are scattered in the complex plane. Can the fluctuation properties of the Dirac spectrum be described by universal predictions of non-Hermitian random matrix theory? We introduce an unfolding procedure for complex eigenvalues and apply it to data from lattice QCD at finite chemical potential μ\mu to construct the nearest-neighbor spacing distribution of adjacent eigenvalues in the complex plane. For intermediate values of μ\mu, we find agreement with predictions of the Ginibre ensemble of random matrix theory, both in the confinement and in the deconfinement phase.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Quantum Chaos in Compact Lattice QED

    Get PDF
    Complete eigenvalue spectra of the staggered Dirac operator in quenched 4d4d compact QED are studied on 83×48^3 \times 4 and 83×68^3 \times 6 lattices. We investigate the behavior of the nearest-neighbor spacing distribution P(s)P(s) as a measure of the fluctuation properties of the eigenvalues in the strong coupling and the Coulomb phase. In both phases we find agreement with the Wigner surmise of the unitary ensemble of random-matrix theory indicating quantum chaos. Combining this with previous results on QCD, we conjecture that quite generally the non-linear couplings of quantum field theories lead to a chaotic behavior of the eigenvalues of the Dirac operator.Comment: 11 pages, 4 figure

    Impossibility of spontaneously breaking local symmetries and the sign problem

    Full text link
    Elitzur's theorem stating the impossibility of spontaneous breaking of local symmetries in a gauge theory is reexamined. The existing proofs of this theorem rely on gauge invariance as well as positivity of the weight in the Euclidean partition function. We examine the validity of Elitzur's theorem in gauge theories for which the Euclidean measure of the partition function is not positive definite. We find that Elitzur's theorem does not follow from gauge invariance alone. We formulate a general criterion under which spontaneous breaking of local symmetries in a gauge theory is excluded. Finally we illustrate the results in an exactly solvable two dimensional abelian gauge theory.Comment: Latex 6 page

    Self-consistent parametrization of the two-flavor isotropic color-superconducting ground state

    Get PDF
    Lack of Lorentz invariance of QCD at finite quark chemical potential in general implies the need of Lorentz non-invariant condensates for the self-consistent description of the color-superconducting ground state. Moreover, the spontaneous breakdown of color SU(3) in this state naturally leads to the existence of SU(3) non-invariant non-superconducting expectation values. We illustrate these observations by analyzing the properties of an effective 2-flavor Nambu-Jona-Lasinio type Lagrangian and discuss the possibility of color-superconducting states with effectively gapless fermionic excitations. It turns out that the effect of condensates so far neglected can yield new interesting phenomena.Comment: 16 pages, 3 figure
    corecore