12 research outputs found

    Electricity generation using electromagnetic radiation

    Get PDF
    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power

    Nanorice Particles: Hybrid Plasmonic Nanostructures

    Get PDF
    A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU(sup.-1). Methods of making the disclosed nanorice particles are also described herein

    Use of surface modified porous membranes for fluid distillation

    Get PDF
    In some embodiments, the present disclosure pertains to systems and methods for distilling a fluid by exposing the fluid to a porous membrane that includes a surface capable of generating heat. In some embodiments, the heat generated at the surface propagates the distilling of the fluid by converting the fluid to a vapor that flows through the porous membrane and condenses to a distillate. In some embodiments, the surface capable of generating heat is associated with a photo-thermal composition that generates the heat at the surface by converting light energy from a light source to thermal energy. In some embodiments, the photo-thermal composition includes, without limitation, noble metals, semiconducting materials, dielectric materials, carbon-based materials, composite materials, nanocomposite materials, nanoparticles, hydrophilic materials, polymers, fibers, meshes, fiber meshes, hydrogels, hydrogel meshes, nanomaterials, and combinations thereof. Further embodiments pertain to methods of making the porous membranes of the present disclosure

    Generating a heated fluid using an electromagnetic radiation-absorbing complex

    No full text
    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum

    Method for scalable production of nanoshells using salt assisted purification of intermediate colloid-seeded nanoparticles

    No full text
    A method for purifying a suspension containing colloid-seeded nanoparticles and excess colloids is provided that includes adding to the suspension a filter aid comprising a salt. The method further includes filtering the suspension with a filter of a pore size intermediate between the average colloid-seeded nanoparticle size and the average excess colloid size, so as to form a retentate that includes the majority of the colloid-seeded nanoparticles and a filtrate that includes the majority of the excess colloids. Still further, the method includes collecting the retentate. The method may be incorporated into a method of making metallized nanoparticles, such as nanoshells, by reduction of metal ions onto the purified colloid-seed nanoparticles so as to form the metallized nanoparticles

    Partial coverage metal nanoshells and method of making same

    No full text
    Metal Nanoshells having partial coverage of a substrate or core particle and methods of making them are provided. A method of making a partial metal nanoshell preferably includes asymmetrically confining a substrate particle and selectively layering a metallic material over the substrate particle according to the asymmetry. Confining the substrate particle may include attaching it to a support defining an exposed portion and a contact portion. The method may include either chemically modifying the substrate particle. The solid angle of coverage of the partial metal nanoshell may be influenced by the nature of the chemical modification, such as alternatives of activating and passivating the exposed portion

    Waste remediation

    No full text
    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter

    Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    No full text
    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

    Metal nanoshells

    No full text
    The present invention is for particulate compositions and methods for producing them that can absorb or scatter electromagnetic radiation. The particles are homogeneous in size and are comprised of a nonconducting inner layer that is surrounded by an electrically conducting material. The ratio of the thickness of the nonconducting layer to the thickness of the outer conducting shell is determinative of the wavelength of maximum absorbance or scattering of the particle. Unique solution phase methods for synthesizing the particles involve linking clusters of the conducting atoms, ions, or molecules to the nonconducting inner layer by linear molecules. This step can be followed by growth of the metal onto the clusters to form a coherent conducting shell that encapsulates the core

    Cross antennas for surface-enhanced infrared absorption (SEIRA) spectroscopy of chemical moieties

    No full text
    A device for Surface Enhanced Infrared Absorption (SEIRA) that includes at least one pair of metallic antennas deposited on a substrate, wherein the pair of metallic antennas are collinear. The length, width, and height of the metallic antenna determines an infrared absorption of the pair of metallic antennas. The device also includes a gap located between the pair of metallic antennas. A chemical moiety is disposed on at least a portion of the metallic antennas such that the infrared absorption of the chemical moiety is enhanced by the at least one pair of metallic antennas
    corecore