20 research outputs found

    Evaluation of laser bacterial anti-fouling of transparent nanocrystalline yttria-stabilized-zirconia cranial implant.

    Get PDF
    Background and objectiveThe development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers.Study design/materials and methodsA drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment.ResultsAnalysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth.ConclusionsOur results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc

    Characterization of ageing resistant transparent nanocrystalline yttria-stabilized zirconia implants.

    Get PDF
    The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following ISO standards for assessing the ageing resistance of zirconia ceramics. After 100 hr of accelerated ageing (equivalent to many decades of ageing in the body), the samples do not show any signs of phase transformation to monoclinic by X-ray diffraction and micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not decrease, and changes in optical transmittance from 500 to 1000 nm due to ageing treatments was minimal (below 3% for all samples), and unlikely to be due to phase transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has excellent ageing resistance and can withstand long-term implantation conditions without exhibiting LTD

    Macrophages and Intravascular OCT Bright Spots A Quantitative Study

    Get PDF
    ObjectivesThis study hypothesized that bright spots in intravascular optical coherence tomography (IVOCT) images may originate by colocalization of plaque materials of differing indexes of refraction. To quantitatively identify bright spots, we developed an algorithm that accounts for factors including tissue depth, distance from light source, and signal-to-noise ratio. We used this algorithm to perform a bright spot analysis of IVOCT images and compared these results with histological examination of matching tissue sections.BackgroundBright spots are thought to represent macrophages in IVOCT images, and studies of alternative etiologies have not been reported.MethodsFresh human coronary arteries (n = 14 from 10 hearts) were imaged with IVOCT in a mock catheterization laboratory and then processed for histological analysis. The quantitative bright spot algorithm was applied to all images.ResultsResults are reported for 1,599 IVOCT images co-registered with histology. Macrophages alone were responsible for only 23% of the bright spot-positive regions, although they were present in 57% of bright spot-positive regions (as determined by histology). Additional etiologies for bright spots included cellular fibrous tissue (8%), interfaces between calcium and fibrous tissue (10%), calcium and lipids (5%), and fibrous cap and lipid pool (3%). Additionally, we showed that large pools of macrophages in CD68(+) histology sections corresponded to dark regions in comparative IVOCT images; this is due to the fact that a pool of lipid-rich macrophages will have the same index of refraction as a pool of lipid and thus will not cause bright spots.ConclusionsBright spots in IVOCT images were correlated with a variety of plaque components that cause sharp changes in the index of refraction. Algorithms that incorporate these correlations may be developed to improve the identification of some types of vulnerable plaque and allow standardization of IVOCT image interpretation
    corecore