18 research outputs found

    Transition metal doped CeO2 for photocatalytic removal of 2-chlorophenol in the exposure of indoor white light and antifungal activity

    Get PDF
    Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO2 has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks’ height, minor peak shift at 2θ (28.525°) and peaks’ broadening in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2 whereas a lower absorption response was observed for Ni-doped CeO2. An interesting observation regarding the lowering of indirect bandgap energy of Fe-doped CeO2 (∼2.7 eV) and an increase in Ni-doped CeO2 (∼3.0 eV) in comparison to pristine CeO2 (∼2.9 eV) was noticed. The process of e-– h+ recombination in the synthesized photocatalysts was also investigated through photoluminescence spectroscopy. The photocatalytic studies revealed the greater photocatalytic activity of Fe-doped CeO2 with a higher rate (∼3.9 × 10−3 min-1) among all other materials. Moreover, kinetic studies also revealed the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while removing 2-CP in the exposure of indoor light with a Fe-doped CeO2 photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+ core levels in doped CeO2. Using the agar well-diffusion method, the antifungal activity was assessed against the fungus M. fructicola and F. oxysporum. Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-doped CeO2 nanoparticles have outstanding antifungal properties

    Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: electrical behavior, cell viability, and thermal stability

    No full text
    Using pulsed laser ablation technique, graphene oxide (GO) nanoparticles were incorporated into a polymeric blend of polyvinyl chloride (PVC) and polyvinylidene fluoride (PVDF). The nanocomposites were fabricated in film shapes using the casting method. The obtained films were investigated upon their structure and morphology. The films showed a rough surface with moderate porosity. The maximum roughness peak height increased from 142.9 to 198.9 nm for PVC and GO@PVC/PVDF. The thermal stability of the fabricated films was studied and showed that polymers displayed high stability up to 200 °C then were deteriorated exponentially. The weight loss reached around 3.2 % in the first stage and reached about 93.4 % at the last stage, which was above 400 °C. Further, the contact angle plunged from 90.2±3.4° to 65.4±2.5° for PVC, and GO@PVC/PVDF, respectively. Moreover, the dielectric loss was measured upon the variation of applied frequency. It decreased exponentially, starting from 7.1, 12.7, and 21.8 for PVC, PVC/PVDF and GO@ PVC/PVDF, respectively. The cell viability of the nanocomposite films was measured through the human fibroblasts cell line and showed an improvement upon the additional PVDF and GO to be around 95.3 ± 4 ± 3.5% in the case of GO@PVC/PVDF film

    Utilization of lithium incorporated mesoporous silica for preventing necrosis and increase apoptosis in different cancer cells

    No full text
    Abstract There are many molecules used as a drug carrier. TUD-1 is a newly synthesized mesoporous silica (SM) molecule possess two important features; consists of mesoporous so it is very suitable to be drug carrier in addition to that it has the ability to induce apoptosis in cancer cells. However, the effect of TUD-1 appears to act as cell death inducer, regardless of whether it is necrosis or apoptosis. Unfortunately, recent studies indicate that a proportion of cells undergo necrosis rather than apoptosis, which limits the use of TUD-1 as a secure treatment. On the other hand, lithium considered as necrosis inhibitor element. Hence, the current study based on the idea of producing a new Li-TUD-1 by incorporated mesoporous silica (TUD-1 type) with lithium in order to produce a new compound that has the ability to activate apoptosis by mesoporous silica (TUD-1 type) and at the same time can inhibit the activity of necrosis by lithium. Herein, lithium incorporated in TUD-1 mesoporous silica by using sol–gel technique in one-step synthesis procedure. Moreover, lithium incorporated in TUD-1 with different loading in order to form different active sites such as isolated lithium ions, nanoparticles of Li2O, and bulky crystals of Li2O. The ability of the new compounds to induce apoptosis and prevent necrosis was evaluated on three different types of cancer cell lines, which are; liver HepG-2, breast MCF-7, and colon HCT116. The obtained results show that Li-TUD-1 has the ability to control necrosis and thus reduce the side effects of treatments containing silica in the case of lithium added to them, especially in chronic cases. This opinion has demonstrated by the significant increase in the IC50 value and cell viability compared to control groups. Consequently, the idea is new, so it needs more develop and test with materials that have a more apoptotic impact than silica to induce apoptosis without induction of necrosis

    Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices

    No full text
    A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.Rivers, Ports, Waterways and Dredging EngineeringAerospace Manufacturing Technologie

    Integration of WO<sub>3</sub>-Doped MoO<sub>3</sub> with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination

    No full text
    Environmental contamination has become the most pressing issue in recent years. The value of clean water to mankind has sparked interest in heterogeneous photocatalysis. In this study, a novel photocatalyst has been synthesized by integrating WO3-doped MoO3 (WDM) and ZnO through composite formation. The composite nature of the synthesized photocatalyst was confirmed due to the presence of hexagonal ZnO and orthorhombic WDM phases in XRD pattern and scanning electron micrographs. Solid-state absorption spectra and a bandgap analysis showed that WDM-spectral ZnO’s response was better than that of pure ZnO. PL and EIS unveiled the effective role of WDM in suppressing the e−–h+ recombination process and charge-transfer resistance, respectively, in ZnO. The photocatalytic studies showed that WDM-ZnO was able to remove ~90% of 30 ppm 2-nitrophenol (2-NP) with a rate of 1.1 × 10−2 min−1, whereas ~65% 2-NP was removed by ZnO (6.1 × 10−3 min−1 rate) under the exposure of natural sunlight (800 × 102 ± 100 lx). Moreover, ~52% higher total organic carbon (TOC) removal was observed by WDM-ZnO as compared to ZnO. The photocatalytic removal of 2-NP by the produced photocatalysts followed the Langmuir–Hinshelwood kinetic model, as shown by the kinetic studies. The reactive oxygen species (ROS)-trapping established that the photocatalytic removal mechanism of 2-NP over WDM-ZnO in sunlight illumination was mainly triggered by the superoxide anion (O2•−) radical, however, the minor role of hydroxyl (•OH) radicals cannot be completely ignored

    Valorization of Rice Husk and Straw Agriculture Wastes of Eastern Saudi Arabia: Production of Bio-Based Silica, Lignocellulose, and Activated Carbon

    No full text
    Bio-based silica, lignocellulose, and activated carbon were simply produced via the recycling of Hassawi rice biomass waste of Al-Ahsa governorate in the eastern Saudi Arabia region using a fast chemical treatment procedure. Rice husk and rice straw wastes were collected, ground, and chemically treated with sodium hydroxide to extract silica/silicate from the dried plant tissues. The liquid extract is then treated with acid solutions in order to precipitate silica/silicate at neutral medium. Lowering the pH of the supernatant to 2 resulted in the precipitation of lignocellulose. Thermal treatment of the biomass residue under N2 gas stream resulted in activated carbon production. Separated products were dried/treated and characterized using several physical examination techniques, such as FT-IR, SEM/EDX, XRD, and Raman spectroscopy in order to study their structure and morphology. Silica and lignocelluloses products were then preliminarily used in the treatment of wastewaters and water-desalination processes

    Synchronized electrochemical detection of hydroquinone and catechol in real water samples using a Co@SnO2-polyaniline composite

    No full text
    The conductive composite Co@SnO2-PANI was successfully synthesized using hydrothermal/oxidative synthesis. Using differential pulse voltammetry, a glassy carbon electrode modified with a CoSnO2-PANI (polyaniline)-based electrochemical biosensor has been created for the quick detection of two phenolics, hydroquinone (Hq) and catechol (Cat). Differential pulse voltammetry (DPV) measurements revealed two well-resolved, strong peaks for GCE@Co-SnO2-PANI, which corresponded to the oxidation of Hq and Cat at 275.87 mV and +373.76 mV, respectively. The oxidation peaks of Hq and Cat mixtures were defined and separated at a pH of 8.5. High conductivity and remarkable selectivity reproducibility was tested by electrochemical impedance spectroscopy, chronoamperometry, and cyclic voltammetry techniques in standard solution and real water samples. The proposed biosensor displayed a low detection limit of 4.94 nM (Hq) and 1.5786 nM (Cat), as well as a large linear range stretching from 2 × 10−2 M to 2 × 10−1 M. The real-sample testing showed a good recovery for the immediate detection of Hq (96.4% recovery) and Cat (98.8% recovery) using the investigated sensing apparatus. The synthesized biosensor was characterized by XRD, FTIR, energy dispersive spectroscopy and scanning electron microscopy

    A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries

    No full text
    The textile industry generated a series of synthetic dyestuffs that threatened environmental protection. Azo dyes, widely utilized in textile, paper, fruit, leathers, cosmeceuticals and pharmaceutical fields, account for most of the dyestuffs made. Since they have colour fastness properties, stability, and susceptibility to oxidation, existing effluent treatment methods cannot entirely strip different dyes from effluents. Under certain environmental factors, bacteria decolourize and degrade dyes. The treatment process is cheap, environmentally safe, and can be used on various dyes. However, textile plant wastewater can produce many polluting chemicals and dyes. Environmental legislation is increasingly being enacted to regulate mainly azo-based dyes in the environment. The potential of the microbes for the decolourization of dyes and metabolizing them is long-known knowledge. The toxic components of dyes challenge a potential threat to all the living forms of life. Though both natural and synthetic dyes are used for the colourization of textiles, only synthetic ones are challenging to decolourize. Microbial-based bioremediation of dyes has been studied and reviewed primarily to accelerate dye degradation. The various piece of the literature revealed that the majority of these dye removal microbes belong to mainly white-rot fungi, a consortium of anaerobic bacteria. In addition to this, there are several (genetically engineered microorganisms) GEMs that remediate dyes efficiently. Here in the current review, the authors have tried to bridge the existing gap in the bioremediation of dyestuff. Moreover, the authors have also tried to provide the latest trend in this field. This study will surely benefit the industries and researchers related to dyestuffs by maintaining eco-friendly approaches

    A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries

    No full text
    The textile industry generated a series of synthetic dyestuffs that threatened environmental protection. Azo dyes, widely utilized in textile, paper, fruit, leathers, cosmeceuticals and pharmaceutical fields, account for most of the dyestuffs made. Since they have colour fastness properties, stability, and susceptibility to oxidation, existing effluent treatment methods cannot entirely strip different dyes from effluents. Under certain environmental factors, bacteria decolourize and degrade dyes. The treatment process is cheap, environmentally safe, and can be used on various dyes. However, textile plant wastewater can produce many polluting chemicals and dyes. Environmental legislation is increasingly being enacted to regulate mainly azo-based dyes in the environment. The potential of the microbes for the decolourization of dyes and metabolizing them is long-known knowledge. The toxic components of dyes challenge a potential threat to all the living forms of life. Though both natural and synthetic dyes are used for the colourization of textiles, only synthetic ones are challenging to decolourize. Microbial-based bioremediation of dyes has been studied and reviewed primarily to accelerate dye degradation. The various piece of the literature revealed that the majority of these dye removal microbes belong to mainly white-rot fungi, a consortium of anaerobic bacteria. In addition to this, there are several (genetically engineered microorganisms) GEMs that remediate dyes efficiently. Here in the current review, the authors have tried to bridge the existing gap in the bioremediation of dyestuff. Moreover, the authors have also tried to provide the latest trend in this field. This study will surely benefit the industries and researchers related to dyestuffs by maintaining eco-friendly approaches

    Designing Highly Active S-g-C<sub>3</sub>N<sub>4</sub>/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study

    No full text
    The current research is about the synthesis of pure nickel sulfide, a series of Te (0, 0.5, 1, 1.5, 2, and 3 wt.%)-doped NiS (Te@NiS) nanoparticles (NPs), and a series of S-g-C3N4 (10, 30, 50, 70, and 80 wt.%)/Te@NiS nanocomposites (NCs), fabricated through a hydrothermal route. XRD and FTIR spectroscopic techniques demonstrated the successful synthesis of NPs and NCs. SEM-EDX images confirmed the flakelike structure and elemental constituents of the fabricated materials. Tauc plots were drawn, to calculate the band gaps of the synthesized samples. Te doping resulted in a significant reduction in the band gap of the NiS NPs. The photocatalytic efficiency of the NPs and NCs was investigated against MB, under sunlight. The results obtained for the photocatalytic activity, showed that 1%Te@NiS nanoparticles have an excellent dye degradation capacity in sunlight. This was made even better by making a series of SGCN/1% Te@NiS nanocomposites with different amounts of S-g-C3N4. When compared to NiS, Te@NiS, SGCN, and 70%SGCN/1%Te@NiS, the 70%SGCN/1%Te@NiS NCs have excellent antifungal ability. The higher impact of SGCN/Te@NiS, may be due to its enhanced ability to disperse and interact with the membranes and intracellular proteins of fungi. The 70%SGCN/1%Te@NiS NCs showed excellent antibacterial and photocatalytic efficiency. Thus, the 70%SGCN/1%Te@NiS NCs might prove fruitful in antibacterial and photocatalytic applications
    corecore