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Besides natural sunlight and expensive artificial lights, economical indoor white
light can play a significant role in activating a catalyst for photocatalytic removal of
organic toxins from contaminated water. In the current effort, CeO2 has been
modifiedwith Ni, Cu, and Fe through dopingmethodology to study the removal of
2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The
absence of additional diffractions due to the dopants and few changes such as
reduction in peaks’ height, minor peak shift at 2θ (28.525°) and peaks’ broadening
in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The
solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2

whereas a lower absorption response was observed for Ni-doped CeO2. An
interesting observation regarding the lowering of indirect bandgap energy of
Fe-doped CeO2 (~2.7 eV) and an increase in Ni-doped CeO2 (~3.0 eV) in
comparison to pristine CeO2 (~2.9 eV) was noticed. The process of e-– h+

recombination in the synthesized photocatalysts was also investigated through
photoluminescence spectroscopy. The photocatalytic studies revealed the
greater photocatalytic activity of Fe-doped CeO2 with a higher rate (~3.9 ×
10−3 min-1) among all other materials. Moreover, kinetic studies also revealed
the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while
removing 2-CP in the exposure of indoor light with a Fe-doped CeO2

photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+

core levels in doped CeO2. Using the agar well-diffusion method, the antifungal
activity was assessed against the fungus M. fructicola and F. oxysporum.
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Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-
doped CeO2 nanoparticles have outstanding antifungal properties.
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Introduction

A major environmental threat that humanity faces today is the
contamination of water caused by hazardous chemicals released into
the environment by industrial processes. Routine daily activities can
cause hazardous materials to be introduced into natural water
resources, such as aquifers, lakes, oceans, rivers, and groundwater
aquifers. Continually introducing such contaminants into natural
water can result in an alteration of the characteristic features of
natural water as well as polluted water. This is extremely unsuitable
for human health. Chemical pollutants like dyes for textiles,
halogenated compounds, substituted phenols, insecticides,
pesticides, weed killers, and herbicides are known to be
carcinogenic and pose major health risks to humans (Anku et al.,
2017; Samanta et al., 2019; Brillas and Garcia-Segura, 2020; Kanan
et al., 2020; Rafiq et al., 2021). Among toxic organic pollutants-
chlorophenols and nitrophenols, because of their stable structure,
toxic and carcinogenic effects on the human being, have been a
remaining area under concern (Chiou et al., 2008; Adewuyi et al.,
2016; Umukoro et al., 2017; Sharma et al., 2019; Barakat et al., 2020).
Therefore, it is highly desirable to remove these toxins effectively
from the polluted water.

The structural properties of these phenols and their derivatives
have made them difficult to remove from the polluted water by
classical methods, i.e., activated carbon adsorption, chemical
oxidation, and biological treatment. Because activated carbon
adsorption leads to phase separation without degradation of
injurious pollutants, the chemical oxidation method is unable to
remove pollutants efficiently, and biological treatments are slow and
pH and temperature dependent, while the advanced oxidation
process seems to be better for effective removal of such sort of
destructive pollutants using light (Eryılmaz and Genç, 2021; Ren
et al., 2021; Saputera et al., 2021).

Advanced oxidation leads to the formation of highly reactive
species which ultimately react with organic pollutants to degrade
them successfully (Mazivila et al., 2019; Du and Zhou, 2021; Gallo-
Cordova et al., 2021; Huang et al., 2021; Luo et al., 2021). Among
advanced oxidation processes, photocatalytic degradation and
mineralization are efficient methods of converting highly toxic
organic pollutants to harmless species under ambient conditions
using light and a photocatalyst through homogeneous or
heterogenous photocatalysis. In addition, heterogeneous
photocatalysis is considered advantageous over homogenous
photocatalysis due to an easy retrievability of a catalyst from the
reaction mixture and then the reusability of a catalyst (Gisbertz and
Pieber, 2020). Following the concept of the advanced oxidation
process, the heterogeneous photocatalytic reaction starts with the
generation of H2O2, OH·, O2

·-, HOO· and H+ species by the
absorption of a photon having energy equal to or greater than
the band gap energy of the photocatalyst which is being used (Loeb

et al., 2019; Pandey et al., 2020; Serrà and Philippe, 2020; Danish
et al., 2021). In addition, hydroxyl and superoxide anion radicals
react with phenols, depending on the position and nature of
substituent groups on ph enols, to degrade them into some
oxygenate intermediates and consequently, these oxygenates
mineralize to their respective harmless species (Qamar et al.,
2017a; Qamar et al., 2017b; Alhogbi et al., 2020).

Metal oxide-assisted photocatalytic wastewater treatment is a
relatively prospective subject and growing rapidly to remove
hazardous pollutants from contaminated water. In this context,
metallic oxide semiconductors such as TiO2, ZnO, Fe2O3, SnO2,
WO3, Bi2O3, V2O5, Cu2O, NiO, etc. have been studied extensively
both in artificial and natural light sources to acquire pollution free
water (Ahmed et al., 2010; Oturan and Aaron, 2014; Wang et al.,
2014; Qamar et al., 2015; Zangeneh et al., 2015; Aslam et al., 2018).
However, exploration of a potential photocatalyst for the effective
removal of toxic pollutants from the wastewater has not over yet and
researchers are paying attention to study the photocatalytic
properties of CeO2-based photocatalysts for the abatement of
organic pollutants. Although, bare CeO2 has wide application in
electrocatalysis, solar cells, fuel cells and photocatalysis due to its
high chemical stability, low toxicity and greater oxygen storage
capacity (Ma et al., 2019; Fauzi et al., 2022). However, its
performance in photocatalysis is unsatisfactory due to greater
photo excitons’ recombination, lower absorption cross-section of
light spectrum and higher band gap (2.8–3.1 eV) energy (Ma et al.,
2019; Fauzi et al., 2022). Therefore, it is a need to modify CeO2 in
order to increase its utilization as a photocatalyst for removal of
organic toxins. The unique thing of this study is the introduction of
transition metals into CeO2 without significantly changing the cubic
structure of CeO2 photocatalyst for the removal of 15 ppm 2-
chlorophenol in the illumination of 70 W indoor white light.

Previously, researchers utilized expensive artificial light sources
such as solar simulator, Hg and Xe lamps for photocatalytic
degradation of various organic toxins using variety of
photocatalysts (Tang et al., 2004; Hao et al., 2015; Aslam et al.,
2016; Xu et al., 2017). In addition, a few studies are available for the
photocatalytic removal of 2-CP using CeO2-based photocatalysts
such as CeO2, g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01), TiO2-CeO2-
ZrO2 (Aslam et al., 2016; García-Hernández et al., 2019; Rashid
et al., 2019). However, various combinations of CeO2 with metals,
non-metals and photocatalysts such as Ag2CO3, rGO, CdS, AgBr,
SrFe12O9, BiOCl, g-C3N4, Co3O4, etc., are reported for the
photocatalytic removal of organic dyes, phenols and
pharmaceutical ingredients (Ma et al., 2019; Yao et al., 2021;
Fauzi et al., 2022). Moreover, literature reveals that a
photocatalysis setup while using an economical 70 W indoor
white light for the removal of 2-CP over the proposed
composition of CeO2-based photocatalysts has not been reported
before.

Frontiers in Chemistry frontiersin.org02

Qamar et al. 10.3389/fchem.2023.1126171

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1126171


In this study, CeO2 has been synthesized using a co-precipitation
methodology and its modification was executed through doping
with transition metals, i.e., Fe, Ni and Cu because 3d transition
metals are considered capable dopants in tuning the properties of
CeO2 for catalysis applications (Yue and Zhang, 2009; Elias et al.,
2014; Qi et al., 2019). The spectral response and bandgap of the
synthesized materials were evaluated using UV-visible diffuse
reflectance spectroscopy (UV-visible DRS) whereas
photoluminescence (PL) fluorometer was used to investigate e-

–h+ recombination. X-ray diffraction (XRD) and X-ray
photoelectron spectroscopy (XPS) were used to evaluate the
structural and chemical characterization of synthesized materials.
The photocatalytic activity of the synthesized photocatalysts was
studied for the removal of 2-chlorophenol (2-CP) the kinetics for the
photodegradation of 2-CP were also investigated.

Experimental

Materials

Cerium (III) nitrate hexahydrate [Ce(NO3)3.6H2O, Sigma-
Aldrich, ≥99%], iron (III) nitrate non-ahydrate [Fe(NO3)3.9H2O,

Sigma-Aldrich, 99.95%], nickel (II) nitrate hexahydrate
[Ni(NO3)2.6H2O, Sigma-Aldrich, ≥99%], copper (II) nitrate
trihydrate [Cu(NO3)2.3H2O, Sigma-Aldrich, 99.99%], ethanol
(C2H5OH, Sigma-Aldrich, ≥99.8%), nitric acid [HNO3, Sigma-
Aldrich, 70%], acetone [CH3COCH3, Sigma-Aldrich], potassium
hydroxide [KOH, Sigma-Aldrich, 99.5%] and triton X-100 [Tx-100,
Sigma-Aldrich] were used without further purification for the
synthesis of photocatalysts.

Synthesis of pristine CeO2

In a typical synthesis of CeO2, 30 g Ce(NO3)3.6H2O was dissolved
in 100 mL distilled water with continuous stirring until the formation
of a clear solution. After complete dissolution, 3 mL Triton X-100 was
added to the clear solution under continuous stirring for 30 min at
room temperature. To hydrolyze the solution, 0.1M potassium
hydroxide (KOH) was added to the solution dropwise till the
formation of yellow precipitate near pH 9 at 50°C. The mixture
containing the yellow precipitate, surfactant and KOH content was
washed several times with distilled water and then with ethanol/water
(30:60) mixture to remove surfactant and basic contents present in the
mixture until the mixture attained the neutral pH. The precipitate was
separated from the reaction mixture through filtration and the
obtained yellow precipitate was again washed with ethanol/water
(30:60) mixture and dried overnight at 100°C in a vacuum oven

FIGURE 1
The comparison of solid-state (A) absorption and (B) reflectance
(%) spectra of pristine CeO2 and doped CeO2.

FIGURE 2
The graphical evaluations of (A) direct and (B) indirect band gaps
of pristine and doped CeO2.
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and then calcined in a muffle furnace for 4 h at 400°C. The calcined
material was ground using mortar and pestle to get fine powder of
CeO2 photocatalyst.

Synthesis of modified CeO2

For the synthesis of Cu doped CeO2, 0.381 g Cu(NO3)2.3H2O
and 30.681 g Ce(NO3)3.6H2O were dissolved separately in distilled
water with continuous stirring at room temperature till the
formation of clear solutions and marked solution A and B,
respectively. Then, solution A was added slowly into the beaker
having solution B with continuous stirring at 50°C for 10 min
followed by the addition of 3 mL Triton X-100 under continuous

stirring for 30 min. The mixture of both precursors and surfactant
was then hydrolyzed with the slow addition of 0.1M KOH till the
formation of precipitate at pH 9. The formed precipitate was
separated through filtration, washed with water and ethanol/
water (30:60) mixture, and dried overnight in a vacuum oven at
100 °C. The dried sample was then subjected to the muffle furnace
for calcination at 400°C for 4 h. The calcined material was ground
using mortar and pestle to get fine powder of Cu doped CeO2

photocatalyst. The same procedure was applied for the synthesis of
Ni-doped CeO2 and Fe-doped CeO2 except for the different
amounts of precursors, e.g., 0.496 g Ni(NO3)2.6H2O and 0.723 g
Fe(NO3)3.9H2O about the Ni and Fe contents, respectively for
30.681 g of Ce(NO3)3.6H2O. The synthesized photocatalytic
materials were characterized by UV- visible diffuse reflectance
spectroscopy (UV-Vis DRS), photoluminescence (PL), X-ray
Diffraction (XRD), scanning electron microscopy (SEM) and
X-ray photoelectron spectroscopy (XPS).

Photocatalytic studies

The photocatalytic performance of transition metal doped
CeO2 was studied for the removal of 15 ppm 2-chlorophenol
under the illumination of 70 W indoor white light (800 × 102 lx)
at room temperature. In this context, the synthetic wastewater
containing 15 ppm 2-chlorophenol was prepared in the
laboratory, and the dose of the photocatalyst was optimized by
exposing the suspension having 100 mL of pollutant with varying
amounts of CeO2 photocatalyst (50, 100, 150, and 200 mg) in a
glass reactor of 14 cm (diameter) and 2 cm (height) to the indoor
white light for 3 h and the samples were collected and filtered
using 0.20 µm syringe filter. The filtered samples were then
subjected to UV-visible spectrophotometer for the monitoring
of photodegradation of 2-CP and 100 mg of the photocatalyst was
found to be the optimum dose of catalyst in 100 mL of pollutant.
The optimized amount, i.e., 100 mg/100 mL of all four
photocatalysts was further used for the evaluation of their
photocatalytic degradation efficiency in removing 2-CP under
the exposure of 70 W indoor LED white light (800 × 102 lx,
400–800 nm, Opple Lighting Co., Ltd. China) at room
temperature and samples were collected after 30, 60, 90, 120,
180 and 240 min and filter using 0.20 µm syringe filter for UV-
visible spectrophotometric analysis to evaluate the kinetic of
photodegradation.

To study the removal of the target pollutant from the polluted
water, the samples were collected using a syringe filter from the
suspension exposed to the light after a regular interval and were
subjected to UV-visible spectrophotometer for the determination of
the concentration of the removed pollutant which ultimately led to
the % removal of target pollutant by the photocatalyst under the
exposure of light using the following equation.

% removal � Co − Ct

Co
× 100 (1)

Here, Co is the pollutant initial concentration whereas Ct is the
concentration of the pollutant after exposure time “t.”Moreover, the
validity of Langmuir Hinshelwood (L-H) kinetic models was also

FIGURE 3
The comparison of PL spectra of pristine CeO2 and doped CeO2.

FIGURE 4
The comparison of XRD patterns of pristine CeO2 with doped
CeO2.
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FIGURE 5
The comparison of scanning electron micrographs of (A) pristine CeO2 and (B) Fe doped CeO2.

FIGURE 6
The comparison of absorption spectra for photocatalytic degradation of 15 ppm 2-CP over (A)CeO2 (B) Fe doped CeO2 (C)Cu doped CeO2 and (D)
Ni doped CeO2 at different intervals of time under the illumination of indoor white light (800 × 102 lx).
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studied using the following equation to evaluate the kinetics
of photocatalytic removal of organic pollutants under exposure to
light.

ln
Co

Ct
� k × t (2)

Here, k is the rate constant which was determined from the slope
by plotting ln Co

Ct
Vs. t.

Results and discussion

The solid-state absorption response of the pristine CeO2

compared to the modified CeO2 is presented in Figure 1A in UV
(200–400 nm) as well as visible (400–800 nm) regions of the
spectrum. Wherein, Cu-doped CeO2 shows higher absorbance in
both UV and visible regions than other synthesized materials.
Interestingly, Cu-doped CeO2 and Fe-doped CeO2 showed higher
absorbance of visible light than CeO2 and Ni-doped CeO2 whereas
in the UV region of the spectrum only Cu-doped CeO2 presented
higher absorbance than other photocatalysts. So, the insertion of Cu
and Fe content into the structure of CeO2 leads to an increase in the

spectral response of CeO2 whereas the same amount of Ni content
has a detrimental effect on the spectral response of the pristine CeO2.
Moreover, the response of these photocatalysts in reflecting the light
spectrum has also been explored in Figure 1B. Wherein, lower
reflectance (%) was noticed for CeO2 having copper contents
followed by Fe and Ni contents in the lower energy region of the
spectrum. This higher absorbance and lower reflectance (%) were
attributed to the higher absorbance ability of copper content present
in the structure of CeO2 as compared to Fe and Ni.

The direct and indirect band gap evaluations (Figures 2A, B)
reveal a lowering in the band gap energy of Cu and Fe-doped CeO2

photocatalysts as compared to pristine CeO2 was noticed which may
be attributed to the shifting of conduction band edges to lower
energy due to the addition of Cu and Fe contents in the structure of
CeO2 (Yue and Zhang, 2009; Qi et al., 2019). Whereas a significant
increase in the band gap energy of Ni-doped CeO2 was observed.
The direct and indirect band gaps of the pristine CeO2 were noticed
at ~3.0 and ~2.9 eV, respectively which have good agreement with
the literature values (Aslam et al., 2016). Moreover, the direct band
gap energies found for Cu, Fe, and Ni-doped CeO2 photocatalysts
are ~2.85, ~2.8, and ~3.2 eV whereas evaluated indirect band gap
energies are ~2.78, ~2.7, and ~3.0 eV, respectively as shown in

FIGURE 7
The comparison of % degradation of 15 ppm 2-CP over (A)CeO2 (B) Fe doped CeO2 (C)Cu doped CeO2 and (D)Ni doped CeO2 at different intervals
of time under the illumination of indoor white light (800 × 102 lx).
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Figures 2A, B. A greater decrease in the band gap energy was noticed
for Fe doped CeO2 as compared to other photocatalysts which reveal
that this photocatalyst requires lower energy as compared to pristine
and other modified photocatalysts to make good use of excitons for
the removal of organic toxins under the illumination of light.

Photoluminescence analysis is a promising technique to study
the emission intensity of the excited electron under the illumination
of light which ultimately leads to the study of e-–h+ recombination
process. Figure 3 depicts the comparison of photoluminescence
spectra of pristine and doped CeO2 photocatalysts, wherein a
significantly lower emission intensity was noticed for Cu and Ni-
doped CeO2 as compared to unmodified CeO2. The relative decrease
in emission intensities of the Cu and Fe doped CeO2 as compared to
CeO2 is strong evidence for lowering e

-–h+ recombination rate than
pristine CeO2 which favors the photocatalytic degradation of
organic toxins. Moreover, the decrease in strong emission bands
around 470 nm is attributed to the trapping of photoexcitons by the
surface defects generated due to the insertion of Cu or Fe into the
structure of CeO2 (George et al., 2020).

The comparison of x-ray diffraction patterns of the modified
CeO2 with pristine CeO2 is presented in Figure 4 and the cubic phase
of the synthesized CeO2 was confirmed by matching diffractions
planes (111), (200), (220), (311), (222), (400), (331), and (420) with

literature and JCPDS 34-0394 (Aslam et al., 2016). The absence of
additional diffraction peaks related to the dopant entities in the
respective diffraction patterns verifies the successful doping of CeO2

with Cu, Ni, and Fe. Moreover, few changes such as reduction in few
peaks’ height, minor peak shift at 2θ (28.525°) and peaks’ broadening
in XRD patterns of modified CeO2 as compared to pristine CeO2

also favour the introduction of dopants in CeO2 (Kumar et al., 2010).
Moreover, the successful insertion of dopants into CeO2 without
significantly altering its structure were also evident from the
micrographs as shown in Figure 5. The average crystallite size of
the photocatalytic materials was calculated using a high-intensity
diffraction peak at 2θ (28.525°) with the help of the Debye-Scherrer
equation. The calculated crystallite sizes were 9.76, 3.46, 4.97, and
8.28 nm for pristine CeO2, Fe doped CeO2, Cu doped CeO2, and Ni
doped CeO2, respectively. Moreover, a significant difference in
doped CeO2 as compared to unmodified CeO2 were also reported
in literature which support the changes in crystallite sizes of Fe and
Cu doped CeO2 (Yue and Zhang, 2009; Kumar et al., 2010; Qi et al.,
2019).

As this study was designed to investigate the effect of transition
metal dopants on the photocatalytic performance of CeO2 under the
illumination of indoor white light for the degradation of 15 ppm
2−CP. Before the exposure of suspension containing photocatalyst

FIGURE 8
Rate of removal of 15 ppm 2-CP over (A)CeO2 (B) Fe doped CeO2 (C)Cu doped CeO2 and (D)Ni doped CeO2 at different intervals of time under the
illumination of indoor white light (800 × 102 lx).
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and 2-CP to light as mentioned in the experimental section, the
suspension was kept in dark for 30 min to establish an equilibrium
between pollutant and catalyst. The photolysis of 2-CP was also

evaluated by recording the absorption spectrum of the substrate
after 240 min of light exposure without the presence of a
photocatalyst. The amount of photocatalyst was also optimized

FIGURE 9
The comparison of XPS survey scan of (A) Fe-doped CeO2 (B) Ni-doped CeO2 (C) Cu-doped CeO2 and (D) O1s levels of modified CeO2

photocatalysts.

TABLE 1 Agar Well cut diffusion method zone of inhibition for the antifungal action of CeO2, Fe-doped CeO2, Ni-doped CeO2 and Cu-doped CeO2.

Antifungal performance

Bacterial strains Samples Blank Zone of inhibition (mm)

M. fructicola CeO2 0 17.4

Fe-doped CeO2 0 25.3

Cu-doped CeO2 0 21.1

Ni-doped CeO2 0 12.2

F. oxysporum CeO2 0 15.7

Fe-doped CeO2 0 23.1

Cu-doped CeO2 0 19.4

Ni-doped CeO2 0 10.3
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(100 mg of photocatalyst) while studying the photocatalytic removal
of 15 ppm 2-CP with varying doses of CeO2 catalyst under the
illumination of indoor white light. The comparison of absorption
spectra of photocatalytic removal of 2-CP over pristine CeO2, Fe
doped CeO2, Cu doped CeO2, and Ni-doped CeO2 under the
illumination of indoor white light (800 × 102 lx) is provided in
Figure 6, respectively at different exposure time. Whereas the
photocatalytic degradation (%) of 2-CP at different exposure over
the pristine and modified CeO2 photocatalysts is given in Figure 7,
respectively and highest photodegradation (~ 65%) was noticed for
Fe doped CeO2 followed by Cu doped CeO2 (~ 60%), pure CeO2

(~59%) and Ni doped CeO2 (~45%) under the exposure of white
light after 240 min of exposure. The decreasing trend of removal
efficiency (%) of the photocatalysts is given below.

Fe dopedCeO2 > CudopedCeO2 > CeO2 > Ni dopedCeO2

Moreover, the rate of photodegradation of 15 ppm 2-CP over
synthesized photocatalysts was also investigated and higher
photocatalytic removal efficiency with rate constant (k = 3.9 × 10−3

min-1) was observed by Fe doped CeO2 than others as shown in
Figure 8. The calculated bandgap energy values as shown in Figure 2
also support the possible higher photodegradation efficiency of Fe-
doped CeO2 due to its lower bandgap energy than CeO2. Moreover, a
lower photo-excitons’ recombination in PL spectra presented by Fe-
doped CeO2 also arguments its higher removal efficiency due to the
possible charge transferability for the generation of ROS. The
decreasing trend of rate of removal of 2-CP by different
photocatalysts is provided below.

Fe dopedCeO2 > CeO2 > CudopedCeO2 > Ni dopedCeO2

The kinetic study also reveals that the photocatalytic removal
of 2-CP by Fe doped CeO2, pure CeO2, Cu doped CeO2 followed
Langmuir Hinshelwood (L-H) kinetic model whereas the
photocatalytic removal of 2-CP by Ni doped CeO2 did not
follow Langmuir Hinshelwood (L-H) kinetic model. Previously,
Zhang et al. (2022) reported a decrease in degradation rate of 2-CP
removal in the illumination of 5W LED white light as compared to
300 W Xe arc lamp. In another study, BiFeO3/Bi2Fe4O9

heterojunctions were able to remove 95% of the 2-CP in the
exposure of 150W LED white light (Wang et al., 2022).

In this study, x-ray photoelectron spectroscopy (XPS) was
also carried out to investigate the chemical and electronic states
of the elements in modified materials as shown in Figure 9. The
presence of Ce3d3/2, Ce3d5/2, Fe2p1/2, Fe2p3/2, Cu2p1/2, Cu2p3/2,
Ni2p1/2, Ni2p3/2 core levels and O1s levels in the synthesized
photocatalysts can be seen in Figure 9, which confirm the
existence of dopants (Fe3+, Cu2+ and Ni2+) in doped CeO2 as
shown in inset figures. Moreover, the effect of dopants was also
verified by the appearance of peak correspond to O1s level at
different binding energies which ultimately confirm the
different environment of oxygen.

Antifungal activity

Using the agar well-diffusion method and amphotericin B as a
reference, CeO2, Fe-doped CeO2, Ni-doped CeO2, and Cu-doped

CeO2 nanoparticles were further assessed for their antifungal
activity against M. fructicola and F. oxysporum. Table 1 provides
a summary of the outcomes. According to the antifungal activity
data (Table 1), Fe-doped CeO2 nanoparticles exhibit greater toxicity
when compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2

nanoparticles, with zone inhibition values of 25.3 and 23.1 mm. Due
to their small particle size, the Fe-doped CeO2 nanoparticles easily
pass through the fungal cell membrane, attach to functional protein
groups as well as substances that contain phosphorus and sulphur,
including DNA, and ultimately result in fungal cell death. The
improved antifungal impact was caused by the synergistic
interaction of Fe-doped CeO2 nanoparticles and decreased size.

Conclusion

In conclusion, cubic CeO2 was doped successfully with Fe, Cu
and Ni through co-precipitation method followed by calcination at
400°C for 4 h. The crystallite sizes were reduced from 9.76 to
3.46 nm by incorporating 3d transition metals into CeO2. Solid-
state absorption analysis revealed a better spectral response and
lower bandgap energy of Fe and Cu-doped CeO2 than unmodified
CeO2 whereas increase in bandgap energy was noticed for Ni-doped
CeO2. Moreover, the insertion of Cu and Fe into CeO2 suppressed its
e-–h+ recombination process by generating trapping sites for photo-
excitons. Among the synthesized photocatalysts in this study, Fe-
doped CeO2 is excellent for the removal of 2-CP in the illumination
of 70 W indoor LED white light.
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