27 research outputs found

    Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism

    Get PDF
    Background and Purpose Many drugs and environmental contaminants induce hypercholesterolemia and promote the risk of atherosclerotic cardiovascular disease. We tested the hypothesis that pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, regulates the level of circulating atherogenic lipids in humans and utilized mouse experiments to identify the mechanisms involved.Experimental Approach We performed serum NMR metabolomics in healthy volunteers administered rifampicin, a prototypical human PXR ligand or placebo in a crossover setting. We used high-fat diet fed wild-type and PXR knockout mice to investigate the mechanisms mediating the PXR-induced alterations in cholesterol homeostasis.Key Results Activation of PXR induced cholesterogenesis both in pre-clinical and clinical settings. In human volunteers, rifampicin increased intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and total cholesterol and lathosterol-cholesterol ratio, a marker of cholesterol synthesis, suggesting increased cholesterol synthesis. Experiments in mice indicated that PXR activation causes widespread induction of the cholesterol synthesis genes including the rate-limiting Hmgcr and upregulates the intermediates in the Kandutsch-Russell cholesterol synthesis pathway in the liver. Additionally, PXR activation induced plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of hepatic LDL uptake, in both mice and humans. We propose that these effects were mediated through increased proteolytic activation of sterol regulatory element-binding protein 2 (SREBP2) in response to PXR activation.Conclusion and Implications PXR activation induces cholesterol synthesis, elevating LDL and total cholesterol in humans. The PXR-SREBP2 pathway is a novel regulator of the cholesterol and PCSK9 synthesis and a molecular mechanism for drug- and chemical-induced hypercholesterolemia

    PXR and 4β-hydroxycholesterol axis and the components of metabolic syndrome

    No full text
    Abstract Pregnane X receptor (PXR) activation has been found to regulate glucose and lipid metabolism and affect obesity in response to high-fat diets. PXR also modulates vascular tone. In fact, PXR appears to regulate multiple components of metabolic syndrome. In most cases, the effect of PXR action is harmful to metabolic health, and PXR can be hypothesized to play an important role in metabolic disruption elicited by exposure to endocrine-disrupting chemicals. The majority of the data on the effects of PXR activation on metabolic health come from animal and cell culture experiments. However, randomized, placebo-controlled, human trials indicate that the treatment with PXR ligands impairs glucose tolerance and increases 24-h blood pressure and heart rate. In addition, plasma 4β-hydroxycholesterol (4βHC), formed under the control of PXR in the liver, is associated with lower blood pressure in healthy volunteers. Furthermore, 4βHC regulates cholesterol transporters in peripheral tissues and may activate the beneficial reverse HDL cholesterol transport. In this review, we discuss the current knowledge on the role of PXR and the PXR–4βHC axis in the regulation of components of metabolic syndrome

    Extranuclear sirtuins and metabolic stress

    No full text
    Abstract Significance: Extranuclear sirtuins in cytosol (SIRT2) and mitochondria (SIRT3, SIRT4, and SIRT5) are key regulators of metabolic enzymes and the antioxidative defense mechanisms. They play an important role in the adjustment of metabolic pathways in alterations of the nutritional status. Recent Advances: Recent studies have shown that in addition to lysine deacetylation, sirtuins catalyze several different lysine deacylation reactions, removal of lipid modifications, and adenosine diphosphate-ribosylation. Large-scale studies have revealed hundreds of target proteins regulated by different sirtuin modifications. Critical Issues: Sensing of the metabolic state and regulation of the sirtuin function and expression are critical components of the machinery, optimizing cellular functions in the switch from fed to fasting condition. Overfeeding, obesity, and metabolic diseases cause metabolic stress that dysregulates the sirtuins, which may play a role in the pathogenesis and complications of metabolic diseases such as type 2 diabetes, fatty liver disease, and cardiac diseases. In the current review, we will discuss the significance of the extranuclear sirtuins as metabolic regulators and in protection against the reactive oxygen species, and also how these sirtuins are regulated by metabolic status and their putative role in metabolic diseases. Future Directions: To efficiently utilize sirtuins as drug targets for treatment of the metabolic diseases, better understanding of the sirtuin functions, targets, regulation, and cross talk is needed. Furthermore, more studies in humans are needed to confirm the many observations mainly made in animal and cell models so far. Antioxid. Redox Signal. 28, 662–676

    Nuclear receptor PXR in drug-induced hypercholesterolemia

    No full text
    Abstract Atherosclerosis is a major global health concern. The central modifiable risk factors and causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce morbidity and mortality, a thorough understanding of the factors that influence an individual’s cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism and molecular mediator of clinically significant drug–drug interactions, has been shown to induce hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia

    Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia

    No full text
    Abstract Pharmaceuticals and environmental contaminants contribute to hypercholesterolemia. Several chemicals known to cause hypercholesterolemia, activate pregnane X receptor (PXR). PXR is a nuclear receptor, classically identified as a sensor of chemical environment and regulator of detoxification processes. Later, PXR activation has been shown to disrupt metabolic functions such as lipid metabolism and recent findings have shown PXR activation to promote hypercholesterolemia through multiple mechanisms. Hypercholesterolemia is a major causative risk factor for atherosclerosis and greatly promotes global health burden. Metabolic disruption by PXR activating chemicals leading to hypercholesterolemia represents a novel toxicity pathway of concern and requires further attention. Therefore, we constructed an adverse outcome pathway (AOP) by collecting the available knowledge considering the molecular mechanisms for PXR-mediated hypercholesterolemia. AOPs are tools of modern toxicology for systematizing mechanistic knowledge to assist health risk assessment of chemicals. AOPs are formalized and structured linear concepts describing a link between molecular initiating event (MIE) and adverse outcome (AO). MIE and AO are connected via key events (KE) through key event relationships (KER). We present a plausible route of how PXR activation (MIE) leads to hypercholesterolemia (AO) through direct regulation of cholesterol synthesis and via activation of sterol regulatory element binding protein 2-pathway

    CYP-associated drug–drug interactions:a mission accomplished?

    No full text
    Abstract On the basis of official Finnish Medicines Authority (Fimea)-approved drug monographs, less than half of the approved small-molecule drugs between 2007 and 2016 were substrates, inhibitors or inducers of CYP enzymes, predominantly of CYP3A4. No significant unexpected, life-threatening, CYP-associated drug-drug interactions (CYP-DDIs) of newly approved drug entities have been observed in the last 10–15 years. The present analysis seems to suggest that tools to study and predict potentially significant CYP-DDIs are working and efficient

    Streptozotocin-induced Diabetes Represses Hepatic CYP2R1 Expression but Induces Vitamin D 25-Hydroxylation in Male Mice

    No full text
    Abstract Vitamin D deficiency [ie, low plasma 25-hydroxyvitamin D (25-OH-D)] associates with the prevalence of metabolic diseases including type 1 diabetes; however, the molecular mechanisms are incompletely understood. Recent studies have indicated that both fasting and metabolic diseases suppress the cytochrome P450 (CYP) 2R1, the major hepatic vitamin D 25-hydroxylase. We specifically studied the effect of a mouse model of type 1 diabetes on the regulation of Cyp2r1 and vitamin D status. We show that streptozotocin-induced diabetes in mice suppresses the expression of the Cyp2r1 in the liver. While insulin therapy normalized the blood glucose levels in the diabetic mice, it did not rescue the diabetes-induced suppression of Cyp2r1. Similar regulation of Cyp2r1 was observed also in the kidney. Plasma 25-OH-D level was not decreased and was, in contrast, higher after 4 and 8 weeks of diabetes. Furthermore, the vitamin D 25-hydroxylase activity was increased in the livers of the diabetic mice, suggesting compensation of the Cyp2r1 repression by other vitamin D 25-hydroxylase enzymes. Cyp27b1, the vitamin D 1Îą-hydroxylase, expression in the kidney and the plasma 1Îą,25-dihydroxyvitamin D level were higher after 4 weeks of diabetes, while both were normalized after 13 weeks. In summary, these results indicate that in the mouse model of type 1 diabetes suppression of hepatic Cyp2r1 expression does not result in reduced hepatic vitamin D 25-hydroxylase activity and vitamin D deficiency. This may be due to induction of other vitamin D 25-hydroxylase enzymes in response to diabetes

    Inhibition and induction of CYP enzymes in humans:an update

    No full text
    Abstract The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena

    Nutritional status modifies pregnane X receptor regulated transcriptome

    No full text
    Abstract Pregnane X receptor (PXR) regulates glucose and lipid metabolism, but little is known of the nutritional regulation of PXR function. We investigated the genome wide effects of the nutritional status on the PXR mediated gene regulation in the liver. Mice were treated with a PXR ligand pregnenolone 16α-carbonitrile (PCN) for 4 days and subsequently either fasted for 5 hours or after 4-hour fast treated with intragastric glucose 1 hour before sample collection. Gene expression microarray study indicated that PCN both induced and repressed much higher number of genes in the glucose fed mice and the induction of multiple well-established PXR target genes was potentiated by glucose. A subset of genes, including bile acid synthesis gene Cyp8b1, responded in an opposite direction during fasting and after glucose feeding. PXR knockout abolished these effects. In agreement with the Cyp8b1 regulation, PCN also modified the bile acid composition in the glucose fed mice. Contribution of glucose, insulin and glucagon on the observed nutritional effects was investigated in primary hepatocytes. However, only mild impact on PXR function was observed. These results show that nutritional status modifies the PXR regulated transcriptome both qualitatively and quantitatively and reveal a complex crosstalk between PXR and energy homeostasis

    Pregnane X receptor activator rifampin increases blood pressure and stimulates plasma renin activity

    No full text
    Abstract We conducted a clinical trial with 22 healthy volunteers to investigate the effects of pregnane X receptor (PXR) agonist rifampin on blood pressure (BP). The study was randomized, crossover, single‐blind, and placebo‐controlled. Rifampin 600 mg or placebo once daily was administered for a week and the 24‐hour ambulatory BP was monitored at the end of each arm on the eighth day. Rifampin elevated the mean systolic and diastolic 24‐hour BP (4.7 mmHg, P < 0.0001, and 3.0 mmHg, P < 0.001, respectively) as well as the mean heart rate (3.5 bpm, P = 0.038). The serum renin concentration and the plasma renin activity were increased. Although rifampin increased circulating 4β‐hydroxycholesterol (4βHC) as expected, the plasma 4βHC concentration strongly negatively correlated with 24‐hour BP, especially systolic, in both rifampin and placebo arms (rifampin systolic BP, r = −0.69, P < 0.001; placebo systolic BP, r = −0.70, P < 0.001). The 4βHC, an agonist for liver X receptor (LXR), induced renin expression modestly in LXR‐α expressing Calu‐6 cells but only at unphysiologically high 4βHC concentrations. In conclusion, rifampin stimulates renin activity and has a hypertensive effect. This finding should be considered when designing interaction studies involving rifampin or other PXR agonists. Furthermore, PXR may represent a putative therapeutic target for the treatment of hypertension
    corecore