22 research outputs found

    P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets

    Get PDF
    Background: Activated platelets release platelet extracellular vesicles (PEVs). Adenosine diphosphate(ADP) receptors P2Y1 and P2Y12 both play a role in platelet activation, The present hypothesis hereinis that the inhibition of these receptors may affect the release of PEVs.Methods: Platelet-rich plasma from 10 healthy subjects was incubated with saline, P2Y1 antagonistMRS2179 (100 μM), P2Y12 antagonist ticagrelor (1 μM), and a combination of both antagonists.Platelets were activated by ADP (10 μM) under stirring conditions at 37°C. Platelet reactivity wasassessed by impedance aggregometry. Concentrations of PEVs– (positive for CD61 but negative forP-selectin and phosphatidylserine) and PEVs+ (positive for all) were determined by a state-of-the-artflow cytometer. Procoagulant activity of PEVs was measured by a fibrin generation test.Results: ADP-induced aggregation (57 ± 13 area under curve {AUC] units) was inhibited 73%by the P2Y1 antagonist, 86% by the P2Y12 antagonist, and 95% when combined (p < 0.001 for all).The release of PEVs– (2.9 E ± 0.8 × 108/mL) was inhibited 48% in the presence of both antagonists(p = 0.015), whereas antagonists alone were ineffective. The release of PEVs+ (2.4 ± 1.6 × 107/mL)was unaffected by the P2Y1 antagonist, but was 62% inhibited by the P2Y12 antagonist (p = 0.035),and 72% by both antagonists (p = 0.022). PEVs promoted coagulation in presence of tissue factor.Conclusions: Inhibition of P2Y1 and P2Y12 receptors reduces platelet aggregation and affects therelease of distinct subpopulations of PEVs. Ticagrelor decreases the release of procoagulant PEVs fromactivated platelets, which may contribute to the observed clinical benefits in patients treated with ticagrelor

    Hollow organosilica beads as reference particles for optical detection of extracellular vesicles

    Get PDF
    Background: The concentration of extracellular vesicles (EVs) in body fluids is a promising biomarker for disease, and flow cytometry remains the clinically most applicable method to identify the cellular origin of single EVs in suspension. To compare concentration measurements of EVs between flow cytometers, solid polystyrene reference beads and EVs were distributed in the first ISTH organized inter-laboratory comparison studies. The beads were used to set size gates based on light scatter, and the concentration of EVs was measured within the size gates. However, polystyrene beads lead to false size determination of EVs due to the mismatch in refractive index between beads and EVs. Moreover, polystyrene beads gate different EV sizes on different flow cytometers. Objective: To prepare, characterize and test hollow organosilica beads (HOBs) as reference beads to set EV size gates in flow cytometry investigations. Methods: HOBs were prepared by a hard template sol-gel method and extensively characterized for morphology, size and colloidal stability. The applicability of HOBs as reference particles was investigated by flow cytometry using HOBs and platelet-derived EVs. Results: HOBs proved monodisperse with homogeneous shell thickness. Two angle light scattering measurements by flow cytometry confirmed that HOBs have light scattering properties similar to platelet-derived EVs. Conclusions: Because HOBs resemble the structure and light scattering properties of EVs, HOBs with a given size will gate EVs of the same size. Therefore, HOBs are ideal reference beads to standardize optical measurements of the EV concentration within a predefined size range

    Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells

    Get PDF
    We investigated the contribution of the intracellular calcium (Cai2+) transient to acetylcholine (ACh)-mediated reduction of pacemaker frequency and cAMP content in rabbit sinoatrial nodal (SAN) cells. Action potentials (whole cell perforated patch clamp) and Cai2+ transients (Indo-1 fluorescence) were recorded from single isolated rabbit SAN cells, whereas intracellular cAMP content was measured in SAN cell suspensions using a cAMP assay (LANCE®). Our data show that the Cai2+ transient, like the hyperpolarization-activated “funny current” (If) and the ACh-sensitive potassium current (IK,ACh), is an important determinant of ACh-mediated pacemaker slowing. When If and IK,ACh were both inhibited, by cesium (2 mM) and tertiapin (100 nM), respectively, 1 μM ACh was still able to reduce pacemaker frequency by 72%. In these If and IK,ACh-inhibited SAN cells, good correlations were found between the ACh-mediated change in interbeat interval and the ACh-mediated change in Cai2+ transient decay (r2 = 0.98) and slow diastolic Cai2+ rise (r2 = 0.73). Inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (5 μM) facilitated ACh-mediated pacemaker slowing. Furthermore, ACh depressed the Cai2+ transient and reduced the sarcoplasmic reticulum (SR) Ca2+ content, all in a concentration-dependent fashion. At 1 μM ACh, the spontaneous activity and Cai2+ transient were abolished, but completely recovered when cAMP production was stimulated by forskolin (10 μM) and IK,ACh was inhibited by tertiapin (100 nM). Also, inhibition of the Cai2+ transient by ryanodine (3 μM) or BAPTA-AM (25 μM) exaggerated the ACh-mediated inhibition of cAMP content, indicating that Cai2+ affects cAMP production in SAN cells. In conclusion, muscarinic receptor stimulation inhibits the Cai2+ transient via a cAMP-dependent signaling pathway. Inhibition of the Cai2+ transient contributes to pacemaker slowing and inhibits Cai2+-stimulated cAMP production. Thus, we provide functional evidence for the contribution of the Cai2+ transient to ACh-induced inhibition of pacemaker activity and cAMP content in rabbit SAN cells

    Fenugreek seeds estrogenic activity in ovariectomized female rats

    No full text
    The estrogenic activities of fenugreek seeds (Trigonella foenum-graecum L.), widely used in traditional pharmacopoeia, are reflected in the uterus of ovariectomized female rats, with a slight increase in dry and wet weight, a thickening of the stroma and the uterine epithelium and the development of the endometrial glands. In the vagina, the estrogenic action is shown through an increase in the epidermal cell number and a tendency to keratinization, leading to vaginal opening

    Protocol for Measuring Concentrations of Extracellular Vesicles in Human Blood Plasma with Flow Cytometry

    No full text
    Extracellular vesicles (EVs) are lipid membrane enclosed particles that are released from cells into body fluids, such as blood. EVs offer potential new biomarkers of diseases, because the cellular origin, composition, concentration, and function of EVs change in health and disease. The concentration of EVs from specific cell types in blood can be determined with flow cytometry. A flow cytometer measures fluorescence and light scattering signals from single EVs, but only if these signals are sufficiently bright to be detected. Measured concentrations of EVs are therefore only reproducible and comparable if the detection ranges are known and reported in standard units, such as molecules of equivalent soluble fluorophore (MESF) for fluorescence signals and the diameter in nm for scatter signals. The goal of this protocol is to discuss all steps needed to derive the concentration of cell-type specific EVs within a known diameter range and fluorescence range. More specifically, this protocol describes how to determine the concentration of CD61+ (Integrin beta-3, platelet marker), CD235a+ (Glycophorin A, erythrocyte marker), and CD45+ (leukocyte common antigen) EVs in human blood plasma with an Apogee A60-Micro flow cytometer using scatter-based triggering. The principles behind this protocol could lay a firm basis for the design of a protocol suitable for other flow cytometers and body fluids

    Local treatment with the selective IkappaB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation

    Get PDF
    Nuclear factor (NF)-kappaB is a key regulator of synovial inflammation. We investigated the effect of local NF-kappaB inhibition in rat adjuvant arthritis (AA), using the specific IkappaB kinase (IKK)-beta blocking NF-kappaB essential modulator-binding domain (NBD) peptide. The effects of the NBD peptide on human fibroblast-like synoviocytes (FLS) and macrophages, as well as rheumatoid arthritis (RA) whole-tissue biopsies, were also evaluated. First, we investigated the effects of the NBD peptide on RA FLS in vitro. Subsequently, NBD peptides were administered intra-articularly into the right ankle joint of rats at the onset of disease. The severity of arthritis was monitored over time, rats were sacrificed on day 20, and tissue specimens were collected for routine histology and x-rays of the ankle joints. Human macrophages or RA synovial tissues were cultured ex vivo in the presence or absence of NBD peptides, and cytokine production was measured in the supernatant by enzyme-linked immunosorbent assay. The NBD peptide blocked interleukin (IL)-1-beta-induced IkappaB alpha phosphorylation and IL-6 production in RA FLS. Intra-articular injection of the NBD peptide led to significantly reduced severity of arthritis (p < 0.0001) and reduced radiological damage (p = 0.04). This was associated with decreased synovial cellularity and reduced expression of tumor necrosis factor (TNF)-alpha and IL-1-beta in the synovium. Incubation of human macrophages with NBD peptides resulted in 50% inhibition of IL-1-beta-induced TNF-alpha production in the supernatant (p < 0.01). In addition, the NBD peptide decreased TNF-alpha-induced IL-6 production by human RA synovial tissue biopsies by approximately 42% (p < 0.01). Specific NF-kappaB blockade using a small peptide inhibitor of IKK-beta has anti-inflammatory effects in AA and human RA synovial tissue as well as in two important cell types in the pathogenesis of RA: macrophages and FLS. These results indicate that IKK-beta-targeted NF-kappaB blockade using the NBD peptide could offer a new approach for the local treatment of arthriti

    Tissue Factor Coagulant Activity is Regulated by the Plasma Membrane Microenvironment

    No full text
    Background Tissue factor (TF) can be present in a non-coagulant and coagulant form. Whether the coagulant activity is affected by the plasma membrane microenvironment is unexplored. Objective This article studies the presence and coagulant activity of human TF in plasma membrane micro-domains. Methods Plasma membranes were isolated from human MIA PaCa2 cells, MDA-MB-231 cells and human vascular smooth muscle cells by Percoll gradient ultracentrifugation after cell disruption. Plasma membranes were fractionated by OptiPrep gradient ultracentrifugation, and the presence of TF, flotillin, caveolin, clathrin, protein disulphide isomerase (PDI), TF pathway inhibitor (TFPI) and phosphatidylserine (PS) were determined. Results Plasma membranes contain two detergent-resistant membrane (DRM) compartments differing in density and biochemical composition. High-density DRMs (DRM-H) have a density (ρ) of 1.15 to 1.20 g/mL and contain clathrin, whereas low-density DRMs (DRM-L) have a density between 1.09 and 1.13 g/mL and do not contain clathrin. Both DRMs contain TF, flotillin and caveolin. PDI is detectable in DRM-H, TFPI is not detectable in either DMR-H or DRM-L and PS is detectable in DRM-L. The DRM-H-associated TF (> 95% of the TF antigen) lacks detectable coagulant activity, whereas the DRM-L-associated TF triggers coagulation. This coagulant activity is inhibited by lactadherin and thus PS-dependent, but seemed insensitive to 16F16, an inhibitor of PDI. Conclusion Non-coagulant and coagulant TF are present within different types of DRMs in the plasma membrane, and the composition of these DRMs may affect the TF coagulant activity

    P2y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets

    No full text
    Background: Activated platelets release platelet extracellular vesicles (PEVs). Adenosine diphosphate (ADP) receptors P2Y1 and P2Y12 both play a role in platelet activation, The present hypothesis herein is that the inhibition of these receptors may affect the release of PEVs. Methods: Platelet-rich plasma from 10 healthy subjects was incubated with saline, P2Y1 antagonist MRS2179 (100 µM), P2Y12 antagonist ticagrelor (1 µM), and a combination of both antagonists. Platelets were activated by ADP (10 µM) under stirring conditions at 37°C. Platelet reactivity was assessed by impedance aggregometry. Concentrations of PEVs– (positive for CD61 but negative for P-selectin and phosphatidylserine) and PEVs+ (positive for all) were determined by a state-of-the-art flow cytometer. Procoagulant activity of PEVs was measured by a fibrin generation test. Results: ADP-induced aggregation (57 ± 13 area under curve {AUC] units) was inhibited 73% by the P2Y1 antagonist, 86% by the P2Y12 antagonist, and 95% when combined (p < 0.001 for all). The release of PEVs– (2.9 E ± 0.8 × 108/mL) was inhibited 48% in the presence of both antagonists (p = 0.015), whereas antagonists alone were ineffective. The release of PEVs+ (2.4 ± 1.6 × 107/mL) was unaffected by the P2Y1 antagonist, but was 62% inhibited by the P2Y12 antagonist (p = 0.035), and 72% by both antagonists (p = 0.022). PEVs promoted coagulation in presence of tissue factor. Conclusions: Inhibition of P2Y1 and P2Y12 receptors reduces platelet aggregation and affects the release of distinct subpopulations of PEVs. Ticagrelor decreases the release of procoagulant PEVs from activated platelets, which may contribute to the observed clinical benefits in patients treated with ticagrelor
    corecore