23 research outputs found

    Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: A wave energy system application

    Get PDF
    summary:This paper synopsis a new solution for Permanent Magnets Linear Generator (PMLG) state estimation subject to bounded uncertainty. Therefore, a PMLG modeling method is presented based on an equivalent circuit, wherein a mathematical model of the generator adapted to wave energy conversion is established. Then, using the Linear Matrix Inequality (LMI) optimization and a Lyapunov function, this system's Sliding Mode Observer (SMO) design method is developed. Consequently, the proposed observer can give a robust state estimation. At last, numerical examples with and without uncertainty are included to exemplify the effectiveness and applicability of the suggested approaches

    Deep recurrent neural networks based Bayesian optimization for fault diagnosis of uncertain GCPV systems depending on outdoor condition variation

    No full text
    Energy generated from renewable sources is exposed to extremely dynamic variations in climatic conditions as well as uncertainties (current/voltage variability, noise, measurement errors.). These conditions are relevant issues to be considered when monitoring renewable energy conversion (REC) systems. In fact, these uncertain systems are subjected to many failures leading to performance degradation and long downtime maintenance periods. Therefore, fault detection and diagnosis (FDD) are essential to ensure its high dependability. This paper proposes an FDD under climatic conditions variability of uncertain REC systems using deep recurrent neural networks (DRNNs) techniques. Firstly, a novel modeling strategy for REC systems is built. Secondly, different DRNN-based interval-valued data methods are intended to differentiate between the various REC systems operating states. Finally, the hyperparameters of the proposed techniques are tuned using the Bayesian optimization algorithm. The efficiency and robustness of the novel strategy are demonstrated through REC application, using grid-connected photovoltaic (GCPV) systems. The obtained results show the efficiency of the developed strategy by reaching an accuracy rate of 92.40%

    One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations

    No full text
    In recent years, photovoltaic (PV) energy production has witnessed overwhelming growth, which has inspired the search for more effective operations. Nevertheless, different PV faults may appear, which leads to various degradation stages. Furthermore, under different irradiance levels, these faults may be misclassified as a healthy mode owing to the high resemblances between them, thus provoking serious challenges in terms of power losses and maintenance costs. Hence, interposing the irradiance variation in grid-connected PV (GCPV) systems modeling is important for monitoring tasks to ensure the effective operation of these systems, to increase their reliability and to prevent false alarms. Therefore, in this paper, a fault detection and diagnosis (FDD) method for the GCPV systems using machine learning (ML) based on principal component analysis (PCA) is proposed in order to ensure the reliability and security of the whole system under irradiance variations. The proposed strategy consists of three main steps: (i) introduce the irradiance variations in PV system modeling because of its great impact on power production; (ii) feature extraction and selection through PCA; and (iii) fault classification using ML techniques. In this study, we generate a database that is used to compare the proposed strategy with the standard strategy (considering a fixed irradiance during FDD), to make, at first, a complete and significant comparative assessment of fault diagnosis and to demonstrate the efficiency of the proposed strategy. The achieved results show the high effectiveness of the proposed one-class classification-based approach to detect and diagnose PV array anomalies, reaching an accuracy up to 99.68%

    Photovoltaic Power Forecasting Using Multiscale-Model-Based Machine Learning Techniques

    No full text
    The majority of energy sources being used today are traditional types. These sources are limited in nature and quantity. Additionally, they are continuously diminishing as global energy consumption increases as a result of population growth and industrial expansion. Their compensation is made from clean energy and renewable energy. Renewable energy is strongly dependent on climatic conditions; therefore, an aspect of energy management is needed, which is essential in distribution systems, because it enables us to calculate the precise energy used by the load as well as by its many components. It also helps us understand how much energy is required and its origin. The energy management aspect contains two main phases: forecasting and optimization. In this study, we are focused on the forecasting level using intelligent machine learning (ML) techniques. To ensure better energy management, it is very important to predict the production of renewable energy over a wide time period. In our work, several cases are proposed in order to predict the temperature, the irradiance, and the power produced by a PV system. The proposed approach is validated by an experimental procedure and a real database for a PV system. The big data from the sensors are noisy, which pose a major problem for forecasting. To reduce the impact of noise, we applied the multiscale strategy. To evaluate this strategy, we used different performance criteria, such as mean error (ME), mean absolute error (MAE), root mean square error (RMSE), nRMSE and the coefficient of determination (R2). The obtained experimental results show good performance with lower error. Indeed, they achieved an error for nRMSE criteria between 0.01 and 0.37

    Enhanced Neural Network Method-Based Multiscale PCA for Fault Diagnosis: Application to Grid-Connected PV Systems

    No full text
    In this work, an effective Fault Detection and Diagnosis (FDD) strategy designed to increase the performance and accuracy of fault diagnosis in grid-connected photovoltaic (GCPV) systems is developed. The evolved approach is threefold: first, a pre-processing of the training dataset is applied using a multiscale scheme that decomposes the data at multiple scales using high-pass/low-pass filters to separate the noise from the informative attributes and prevent the stochastic samples. Second, a principal component analysis (PCA) technique is applied to the newly obtained data to select, extract, and preserve only the more relevant, informative, and uncorrelated attributes; and finally, to distinguish between the diverse conditions, the extracted attributes are utilized to train the NNs classifiers. In this study, an effort is made to take into consideration all potential and frequent faults that might occur in PV systems. Thus, twenty-one faulty scenarios (line-to-line, line-to-ground, connectivity faults, and faults that can affect the normal operation of the bay-pass diodes) have been introduced and treated at different levels and locations; each scenario comprises various and diverse conditions, including the occurrence of simple faults in the PV1 array, simple faults in the PV2 array, multiple faults in PV1, multiple faults in PV2, and mixed faults in both PV arrays, in order to ensure a complete and global analysis, thereby reducing the loss of generated energy and maintaining the reliability and efficiency of such systems. The obtained outcomes demonstrate that the proposed approach not only achieves good accuracies but also reduces runtimes during the diagnosis process by avoiding noisy and stochastic data, thereby removing irrelevant and correlated samples from the original dataset

    Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM

    No full text
    In this paper, we present a novel and effective fault detection and diagnosis (FDD) method for a wind energy converter (WEC) system with a nominal power of 15 KW, which is designed to significantly reduce the complexity and computation time and possibly increase the accuracy of fault diagnosis. This strategy involves three significant steps: first, a size reduction procedure is applied to the training dataset, which uses hierarchical K-means clustering and Euclidean distance schemes; second, both significantly reduced training datasets are utilized by the KPCA technique to extract and select the most sensitive and significant features; and finally, in order to distinguish between the diverse WEC system operating modes, the selected features are used to train a bidirectional long-short-term memory classifier (BiLSTM). In this study, various fault scenarios (short-circuit (SC) faults and open-circuit (OC) faults) were injected, and each scenario comprised different cases (simple, multiple, and mixed faults) on different sides and locations (generator-side converter and grid-side converter) to ensure a comprehensive and global evaluation. The obtained results show that the proposed strategy for FDD via both applied dataset size reduction methods not only improves the accuracy but also provides an efficient reduction in computation time and storage space

    Enhanced fault diagnosis of wind energy conversion systems using ensemble learning based on sine cosine algorithm

    No full text
    Abstract This paper investigates the problem of incipient fault detection and diagnosis (FDD) in wind energy conversion systems (WECS) using an innovative and effective approach called the ensemble learning-sine cosine optimization algorithm (EL-SCOA). The evolved strategy involves two primary steps: first, a sine-cosine algorithm is used to extract and optimize features in order to only select the most descriptive ones. Second, to further improve the capability, thereby providing the highest accuracy performance, the newly gathered dataset is introduced as input to an ensemble learning paradigm, which merges the benefits of boosting and bagging techniques with an artificial neural network classifier. The essential goal of the developed proposal is to discriminate between the diverse operating conditions (one healthy and six faulty conditions). Three potential and frequent types of faults that can affect the system behaviors including short-circuit, open-circuit, and wear-out are considered and thereby injected at diverse locations and sides (grid and generator sides) in order to evaluate the availability and performance of the proposed technique when compared to the conventional FDD methods. The diagnosis performance is analyzed in terms of accuracy, recall, precision, and computation time. The acquired outcomes demonstrate the efficiency of the suggested diagnostic paradigm compared to conventional FDD techniques (accuracy rate has been successfully achieved 98.35%)

    Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM

    No full text
    The current work presents an effective fault detection and diagnosis (FDD) technique in wind energy converter (WEC) systems. The proposed FDD framework merges the benefits of kernel principal component analysis (KPCA) model and the bidirectional long short-term memory (BiLSTM) classifier. In the developed FDD approach, the KPCA model is applied to extract and select the most effective features, while the BiLSTM is utilized for classification purposes. The developed KPCA-based BiLSTM approach involves two main steps: feature extraction and selection, and fault classification. The KPCA model is developed in order to select and extract the most efficient features and the final features are fed to the BiLSTM to distinguish between different working modes. Different simulation scenarios are considered in this study in order to show the robustness and performance of the developed technique when compared to the conventional FDD methods. To evaluate the effectiveness of the proposed KPCA-based BiLSTM approach, we utilize data obtained from a healthy WTC, which are then injected with several fault scenarios: simple fault generator-side, simple fault grid-side, multiple fault generator-side, multiple fault grid-side, and mixed fault on both sides. The diagnosis performance is analyzed in terms of accuracy, recall, precision, and computation time. Furthermore, the efficiency of fault diagnosis is shown by the classification accuracy parameter. The experimental results show the efficiency of the developed KPCA-based BiLSTM technique compared to the classical FDD techniques (an accuracy of 97.30%)
    corecore