12 research outputs found

    Evaluating the Viscoelastic Properties of Tissue from Laser Speckle Fluctuations

    Get PDF
    Most pathological conditions such as atherosclerosis, cancer, neurodegenerative, and orthopedic disorders are accompanied with alterations in tissue viscoelasticity. Laser Speckle Rheology (LSR) is a novel optical technology that provides the invaluable potential for mechanical assessment of tissue in situ. In LSR, the specimen is illuminated with coherent light and the time constant of speckle fluctuations, τ, is measured using a high speed camera. Prior work indicates that τ is closely correlated with tissue microstructure and composition. Here, we investigate the relationship between LSR measurements of τ and sample mechanical properties defined by the viscoelastic modulus, G*. Phantoms and tissue samples over a broad range of viscoelastic properties are evaluated using LSR and conventional mechanical testing. Results demonstrate a strong correlation between τ and |G*| for both phantom (r = 0.79, p <0.0001) and tissue (r = 0.88, p<0.0001) specimens, establishing the unique capability of LSR in characterizing tissue viscoelasticity

    Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Get PDF
    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm

    The emergence of optical elastography in biomedicine

    No full text
    Optical elastography, the use of optics to characterize and map the mechanical properties of biological tissue, involves measuring the deformation of tissue in response to a load. Such measurements may be used to form an image of a mechanical property, often elastic modulus, with the resulting mechanical contrast complementary to the more familiar optical contrast. Optical elastography is experiencing new impetus in response to developments in the closely related fields of cell mechanics and medical imaging, aided by advances in photonics technology, and through probing the microscale between that of cells and whole tissues. Two techniques — optical coherence elastography and Brillouin microscopy — have recently shown particular promise for medical applications, such as in ophthalmology and oncology, and as new techniques in cell mechanics

    Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering

    No full text
    When characterizing dynamic processes, ergodicity - that is, the equivalence of time averages and of averages over a system\u27s possible microstates - is often invoked. Yet many complex social, economic and material systems are such that practical observations cannot survey the entire ensemble of microstates. In the case of non-ergodic fluids, their slow structural dynamics makes such an approach prohibitive. Blood is a prominent example of a non-ergodic, complex fluid for which today\u27s standards for coagulation tests in vivo are chemically induced offline assays. Here, we show that heterodyne amplification - that is, amplification of a signal by frequency conversion - combined with suitable control of spatiotemporal coherence permits measurements of non-stationary dynamics in non-ergodic, complex media. By taking advantage of this approach, we developed an optical-fibre-based tool that can be directly incorporated into standard vascular-access devices for real-time monitoring of blood coagulability in the operating room
    corecore