79 research outputs found

    Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants

    Get PDF
    Background One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. Methods We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. Findings We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. Interpretation Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. Funding Wellcome Trust

    A century of trends in adult human height

    Get PDF
    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries

    Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies

    Get PDF
    Background: The 2016 Dar Es Salaam Call to Action on Diabetes and Other non-communicable diseases (NCDs) advocates national multi-sectoral NCD strategies and action plans based on available data and information from countries of sub-Saharan Africa and beyond. We estimated trends from 1980 to 2014 in age-standardized mean body mass index (BMI) and diabetes prevalence in these countries, in order to assess the co-progression and assist policy formulation. Methods: We pooled data from African and worldwide population-based studies which measured height, weight and biomarkers to assess diabetes status in adults aged ≥ 18 years. A Bayesian hierarchical model was used to estimate trends by sex for 200 countries and territories including 53 countries across five African regions (central, eastern, northern, southern and western), in mean BMI and diabetes prevalence (defined as either fasting plasma glucose of ≥ 7.0 mmol/l, history of diabetes diagnosis, or use of insulin or oral glucose control agents). Results: African data came from 245 population-based surveys (1.2 million participants) for BMI and 76 surveys (182 000 participants) for diabetes prevalence estimates. Countries with the highest number of data sources for BMI were South Africa (n = 17), Nigeria (n = 15) and Egypt (n = 13); and for diabetes estimates, Tanzania (n = 8), Tunisia (n = 7), and Cameroon, Egypt and South Africa (all n = 6). The age-standardized mean BMI increased from 21.0 kg/m2 (95% credible interval: 20.3–21.7) to 23.0 kg/m2 (22.7–23.3) in men, and from 21.9 kg/m2 (21.3–22.5) to 24.9 kg/m2 (24.6–25.1) in women. The age-standardized prevalence of diabetes increased from 3.4% (1.5–6.3) to 8.5% (6.5–10.8) in men, and from 4.1% (2.0–7.5) to 8.9% (6.9–11.2) in women. Estimates in northern and southern regions were mostly higher than the global average; those in central, eastern and western regions were lower than global averages. A positive association (correlation coefficient ≃ 0.9) was observed between mean BMI and diabetes prevalence in both sexes in 1980 and 2014. Conclusions: These estimates, based on limited data sources, confirm the rapidly increasing burden of diabetes in Africa. This rise is being driven, at least in part, by increasing adiposity, with regional variations in observed trends. African countries’ efforts to prevent and control diabetes and obesity should integrate the setting up of reliable monitoring systems, consistent with the World Health Organization’s Global Monitoring System Framework

    Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331 288 participants

    Get PDF
    Background: Diabetes has been defined on the basis of different biomarkers, including fasting plasma glucose (FPG), 2-h plasma glucose in an oral glucose tolerance test (2hOGTT), and HbA1c. We assessed the effect of different diagnostic definitions on both the population prevalence of diabetes and the classifi cation of previously undiagnosed individuals as having diabetes versus not having diabetes in a pooled analysis of data from population-based health examination surveys in diff erent regions. Methods: We used data from 96 population-based health examination surveys that had measured at least two of the biomarkers used for defining diabetes. Diabetes was defined using HbA1c (HbA1c ≥6·5% or history of diabetes diagnosis or using insulin or oral hypoglycaemic drugs) compared with either FPG only or FPG-or-2hOGTT definitions (FPG ≥7·0 mmol/L or 2hOGTT ≥11·1 mmol/L or history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated diabetes prevalence, taking into account complex survey design and survey sample weights. We compared the prevalences of diabetes using different definitions graphically and by regression analyses. We calculated sensitivity and specificity of diabetes diagnosis based on HbA1c compared with diagnosis based on glucose among previously undiagnosed individuals (ie, excluding those with history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated sensitivity and specificity in each survey, and then pooled results using a random-effects model. We assessed the sources of heterogeneity of sensitivity by meta-regressions for study characteristics selected a priori. Findings: Population prevalence of diabetes based on FPG-or-2hOGTT was correlated with prevalence based on FPG alone (r=0·98), but was higher by 2–6 percentage points at different prevalence levels. Prevalence based on HbA1c was lower than prevalence based on FPG in 42·8% of age–sex–survey groups and higher in another 41·6%; in the other 15·6%, the two definitions provided similar prevalence estimates. The variation across studies in the relation between glucose-based and HbA1c-based prevalences was partly related to participants’ age, followed by natural logarithm of per person gross domestic product, the year of survey, mean BMI, and whether the survey population was national, subnational, or from specific communities. Diabetes defined as HbA1c 6·5% or more had a pooled sensitivity of 52·8% (95% CI 51·3–54·3%) and a pooled specificity of 99·74% (99·71–99·78%) compared with FPG 7·0 mmol/L or more for diagnosing previously undiagnosed participants; sensitivity compared with diabetes defined based on FPGor-2hOGTT was 30·5% (28·7–32·3%). None of the preselected study-level characteristics explained the heterogeneity in the sensitivity of HbA1c versus FPG. Interpretation: Different biomarkers and definitions for diabetes can provide different estimates of population prevalence of diabetes, and differentially identify people without previous diagnosis as having diabetes. Using an HbA1c-based definition alone in health surveys will not identify a substantial proportion of previously undiagnosed people who would be considered as having diabetes using a glucose-based test

    Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants

    Get PDF
    Background: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. Methods: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence-defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs-in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. Findings: We used data from 751 studies including 4,372,000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4.3% (95% credible interval 2.4-7.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28.5% due to the rise in prevalence, 39.7% due to population growth and ageing, and 31.8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. Interpretation: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries.Bin Zhou, Yuan Lu, Kaveh Hajifathalian, James Bentham … Robert J. Adams … Anne Taylor … et al. (WNCD Risk Factor Collaboration

    Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys

    Get PDF
    Background: Worldwide implementation of risk-based cardiovascular disease (CVD) prevention requires risk prediction tools that are contemporarily recalibrated for the target country and can be used where laboratory measurements are unavailable. We present two cardiovascular risk scores, with and without laboratory-based measurements, and the corresponding risk charts for 182 countries to predict 10-year risk of fatal and non-fatal CVD in adults aged 40–74 years. Methods: Based on our previous laboratory-based prediction model (Globorisk), we used data from eight prospective studies to estimate coefficients of the risk equations using proportional hazard regressions. The laboratory-based risk score included age, sex, smoking, blood pressure, diabetes, and total cholesterol; in the non-laboratory (office-based) risk score, we replaced diabetes and total cholesterol with BMI. We recalibrated risk scores for each sex and age group in each country using country-specific mean risk factor levels and CVD rates. We used recalibrated risk scores and data from national surveys (using data from adults aged 40–64 years) to estimate the proportion of the population at different levels of CVD risk for ten countries from different world regions as examples of the information the risk scores provide; we applied a risk threshold for high risk of at least 10% for high-income countries (HICs) and at least 20% for low-income and middle-income countries (LMICs) on the basis of national and international guidelines for CVD prevention. We estimated the proportion of men and women who were similarly categorised as high risk or low risk by the two risk scores. Findings: Predicted risks for the same risk factor profile were generally lower in HICs than in LMICs, with the highest risks in countries in central and southeast Asia and eastern Europe, including China and Russia. In HICs, the proportion of people aged 40–64 years at high risk of CVD ranged from 1% for South Korean women to 42% for Czech men (using a ≥10% risk threshold), and in low-income countries ranged from 2% in Uganda (men and women) to 13% in Iranian men (using a ≥20% risk threshold). More than 80% of adults were similarly classified as low or high risk by the laboratory-based and office-based risk scores. However, the office-based model substantially underestimated the risk among patients with diabetes. Interpretation: Our risk charts provide risk assessment tools that are recalibrated for each country and make the estimation of CVD risk possible without using laboratory-based measurements

    Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants

    Get PDF
    Background: Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods: We analysed, with use of a consistent protocol, population based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m² [underweight], 18·5 kg/m² to <20 kg/m², 20 kg/m² to <25 kg/m², 25 kg/m² to <30 kg/m², 30 kg/m² to <35 kg/m², 35 kg/m² to <40 kg/m², =40 kg/m² [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings: We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m² (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m² (24·0–24·4) in 2014 in men, and from 22·1 kg/m² (21·7–22·5) in 1975 to 24·4 kg/m² (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m² in central Africa and south Asia to 29·2 kg/m² (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m² (21·4–22·3) in south Asia to 32·2 kg/m² (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world’s men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI =35 kg/m²). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women. Interpretation: If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world’s poorest regions, especially in south Asia

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: a pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1,018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean SBP, mean DBP and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probit-transformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-2016, at the same level of population mean SBP and DBP, men and women in south Asia and in central Asia, Middle East and north Africa would have the highest prevalence of raised blood pressure, and men and women in the high-income Asia Pacific and high-income western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: a pooled analysis of 458 population-based studies in Asian and Western countries

    Get PDF
    Background Although high-density lipoprotein (HDL) and non-HDL cholesterol have opposite associations with coronary heart disease, multi-country reports of lipid trends only use total cholesterol (TC). Our aim was to compare trends in total, HDL and non-HDL cholesterol and the total-to-HDL cholesterol ratio in Asian and Western countries. Methods We pooled 458 population-based studies with 82.1 million participants in 23 Asian and Western countries. We estimated changes in mean total, HDL and non-HDL cholesterol and mean total-to-HDL cholesterol ratio by country, sex and age group. Results Since ∼1980, mean TC increased in Asian countries. In Japan and South Korea, the TC rise was due to rising HDL cholesterol, which increased by up to 0.17 mmol/L per decade in Japanese women; in China, it was due to rising non-HDL cholesterol. TC declined in Western countries, except in Polish men. The decline was largest in Finland and Norway, at ∼0.4 mmol/L per decade. The decline in TC in most Western countries was the net effect of an increase in HDL cholesterol and a decline in non-HDL cholesterol, with the HDL cholesterol increase largest in New Zealand and Switzerland. Mean total-to-HDL cholesterol ratio declined in Japan, South Korea and most Western countries, by as much as ∼0.7 per decade in Swiss men (equivalent to ∼26% decline in coronary heart disease risk per decade). The ratio increased in China. Conclusions HDL cholesterol has risen and the total-to-HDL cholesterol ratio has declined in many Western countries, Japan and South Korea, with only a weak correlation with changes in TC or non-HDL cholesterol
    • …
    corecore